java面试题超详细讲解《多线程篇》二_多线程题讲解-程序员宅基地

技术标签: java  开发语言  

单例模式
双重校验锁实现对象单例(线程安全)

public class Singleton {

    private volatile static Singleton uniqueInstance;

    private Singleton() {
    }

    public  static Singleton getUniqueInstance() {
       //先判断对象是否已经实例过,没有实例化过才进入加锁代码
        if (uniqueInstance == null) {
            //类对象加锁
            synchronized (Singleton.class) {
                if (uniqueInstance == null) {
                    uniqueInstance = new Singleton();
                }
            }
        }
        return uniqueInstance;
    }
}



uniqueInstance 采用 volatile 关键字修饰的原因: uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:

为 uniqueInstance 分配内存空间
初始化 uniqueInstance
将 uniqueInstance 指向分配的内存地址
但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。使用 volatile 可以禁止 JVM 的指令重排,保证在多线程环境下也能正常运行。

谈谈 synchronized 和 ReentrantLock 的区别
synchronized是一个内置的Java关键字,ReentrantLock是一个类,实现了Lock接口

synchronized会自动加锁或释放锁,ReentrantLock需要手动加锁和释放锁

synchronized 无法判断获取锁的状态,ReentrantLock 可以判断是否获取到了锁

synchronized底层是JVM层面的锁,ReentrantLock是API层面的锁

synchronized是可重入锁,非公平锁,ReentrantLock是可重入锁,可以选择公平锁和非公平锁

synchronized锁的是对象,锁信息保存在对象头中,ReentrantLock锁的线程,通过代码中int类型的state标识来标识锁的状态

相比synchronized,ReentrantLock增加了一些高级功能。(等待可中断、可实现公平锁、可实现选择性通知)

Lock接口
在jdk1.5以后,增加了juc并发包且提供了Lock接口用来实现锁的功能,它除了提供了与synchroinzed关键字类似的同步功能,还提供了比synchronized更灵活api实现。可以把 Lock 看成是 synchronized 的扩展版,Lock 提供了无条件的、可轮询的(tryLock 方法)、定时的(tryLock 带参方法)、可中断的(lockInterruptibly)、可多条件队列的(newCondition 方法)锁操作。另外 Lock 的实现类基本都支持非公平锁(默认)和公平锁,synchronized 只支持非公平锁。

ReentrantLock
ReentantLock 继承接口 Lock 并实现了接口中定义的方法,他是一种可重入锁,除了能完成 synchronized 所能完成的所有工作外,还提供了诸如可响应中断锁、可轮询锁请求、定时锁等避免多线程死锁的方法。

什么是AQS?
AQS的全称是AbstractQueuedSynchronizer,是一个用来构建锁和同步器的框架,像ReentrantLock,Semaphore,FutureTask都是基于AQS实现的。

AQS的工作流程:AQS会维护一个共享资源,当被请求的共享资源空闲,则将请求资源的线程设为有效的工作线程,同时锁定共享资源。如果被请求的资源已经被占用了,AQS就用过队列实现了一套线程阻塞等待以及唤醒时锁分配的机制。


从图中可以看出AQS维护了一个共享资源和一个FIFO的线程等待队列。这个队列是通过CLH队列实现的,该队列是一个双向队列,有Node结点组成,每个Node结点维护一个prev引用和next引用,这两个引用分别指向自己结点的前驱结点和后继结点,同时AQS还维护两个指针Head和Tail,分别指向队列的头部和尾部。

如何使用AQS自定义同步器?
AQS的资源共享方式:
Exclusive:独占,只有一个线程可以执行,例如ReentrantLock
Share:共享,多个线程可同时执行,如Semaphore/CountDownLatch

AQS的底层使用了模板方法模式,自定义同步器只需要两步:
第一,继承AbstractQueuedSynchronizer,第二,重写以下几种方法:

isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int):独占方式,尝试获取资源。
tryRelease(int):独占方式,尝试释放资源。
tryAcquireShared(int):共享方式,尝试获取资源。负数表示失败,0表示成功,但无剩余可用资源,正数表示成功并且有剩余资源
tryReleaseShared(int):共享方式,尝试释放资源
独占式的ReentrantLock实现方式:,state初始状态为0,表示未锁定状态。A线程进行lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再调用tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

共享式的CountDownLatch实现方式:任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。

一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。

CopyOnWriteArrayList
我们都知道将ArrayList作为共享变量,在多线程的情况下是不安全的,解决方法是使用Collections中的SynchronizedList方法,或者我们代码中进行加锁,其实还有另一种线程安全的List,就是CopyOnWriteArrayList。

当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然后新的容器里添加元素,添加完元素之后,再将原容器的引用指向新的容器。对CopyOnWrite容器进行并发的读的时候,不需要加锁,因为当前容器不会添加任何元素。所以CopyOnWrite容器也是一种读写分离的思想,延时更新的策略是通过在写的时候针对的是不同的数据容器来实现的,放弃数据实时性达到数据的最终一致性。

先对CopyOnWriteArrayList进行一个总体概览,它具有三个特点:

线程安全的,多线程环境下可以直接使用,无需加锁;
通过锁 + 数组拷贝 + volatile 关键字保证了线程安全;
每次数组操作,都会把数组拷贝一份出来,在新数组上进行操作,操作成功之后再赋值回去。
CountDownLatch、CyclicBarrier、Semaphore的区别
CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同;

CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;
而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;
另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。
Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。

CountDownLatch:计数器,允许一个或多个线程等待直到其他线程中执行的一组操作完成同步辅助。可以用于高并发测试,即计数积累了一定数量的线程后再一起执行。
原理:
countDownLatch.countDown(); // 计数器数量-1
countDownLatch.await(); // 线程会被挂起,等待计数器归零,然后再向下执行,可以设置等待时间

import java.util.concurrent.CountDownLatch; // 计数器 
public class CountDownLatchDemo { 
    public static void main(String[] args) throws InterruptedException { 
        
        // 总数是6,必须要执行任务的时候,再使用! 
        CountDownLatch countDownLatch = new CountDownLatch(6); 
        for (int i = 1; i <=6 ; i++) {
             new Thread(()->{ 
                 System.out.println(Thread.currentThread().getName()+" Go out"); 
                 countDownLatch.countDown(); // 数量-1 
             },String.valueOf(i)).start(); 
         }
        countDownLatch.await(); // 等待计数器归零,然后再向下执行 
        System.out.println("Close Door"); 
    } 
}


 


CyclicBarrier: 加法计数器,一组线程全部等待到达共同点。达不到会一直等待
cyclicBarrier.await(); //用来挂起当前线程,直至所有线程都到达brrier状态再同时执行后续任务;

import java.util.concurrent.BrokenBarrierException; 
import java.util.concurrent.CyclicBarrier; 
public class CyclicBarrierDemo { 
    public static void main(String[] args) { 
        /*** 集齐7颗龙珠召唤神龙 */ 
        CyclicBarrier cyclicBarrier = new CyclicBarrier(7,()->{ 
            System.out.println("召唤神龙成功!"); 
        }); 
        for (int i = 1; i <=7 ; i++) { 
            final int temp = i; // lambda能操作到 i 吗 
            new Thread(()->{ 
                System.out.println(Thread.currentThread().getName()+"收 集"+temp+"个龙珠");
                try {
                cyclicBarrier.await(); // 等待 
                } catch (InterruptedException e) { 
                    e.printStackTrace(); 
                } catch (BrokenBarrierException e) { 
                    e.printStackTrace(); 
                } 
            }).start(); 
        } 
    } 
}


 


Semaphore:一组计数信号量
semaphore.acquire(); //获得,假设如果已经满了,等待,等待被释放为止!
semaphore.release(); //释放,会将当前的信号量释放 + 1,然后唤醒等待的线程!
作用: 多个共享资源互斥的使用!并发限流,控制最大的线程数!

import java.util.concurrent.Semaphore; 
import java.util.concurrent.TimeUnit; 
public class SemaphoreDemo { 
    public static void main(String[] args) { 
        // 线程数量:停车位! 限流! 抢车位!6车---3个停车位置
        Semaphore semaphore = new Semaphore(3); 
        for (int i = 1; i <=6 ; i++) { 
            new Thread(()->{ // acquire() 得到 
                try {
                    semaphore.acquire(); 
                    System.out.println(Thread.currentThread().getName()+"抢到车 位");             
                    TimeUnit.SECONDS.sleep(2); 
                    System.out.println(Thread.currentThread().getName()+"离开车 位"); 
                } catch (InterruptedException e) { 
                    e.printStackTrace(); 
                } finally { 
                    semaphore.release(); // release() 释放 
                } 
            },String.valueOf(i)).start(); 
        } 
    } 
}


 


ReadWriteLock读写锁
为了提高性能,Java 提供了读写锁,在读的地方使用读锁,在写的地方使用写锁,灵活控制,如果没有写锁的情况下,读是无阻塞的,在一定程度上提高了程序的执行效率。读写锁分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由 jvm 自己控制的,你只要上好相应的锁即可。
读锁:如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁
写锁:如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁
Java 中读写锁有个接口 java.util.concurrent.locks.ReadWriteLock ,也有具体的实现ReentrantReadWriteLock。


 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/hutubiancheng/article/details/124826063

智能推荐

稀疏编码的数学基础与理论分析-程序员宅基地

文章浏览阅读290次,点赞8次,收藏10次。1.背景介绍稀疏编码是一种用于处理稀疏数据的编码技术,其主要应用于信息传输、存储和处理等领域。稀疏数据是指数据中大部分元素为零或近似于零的数据,例如文本、图像、音频、视频等。稀疏编码的核心思想是将稀疏数据表示为非零元素和它们对应的位置信息,从而减少存储空间和计算复杂度。稀疏编码的研究起源于1990年代,随着大数据时代的到来,稀疏编码技术的应用范围和影响力不断扩大。目前,稀疏编码已经成为计算...

EasyGBS国标流媒体服务器GB28181国标方案安装使用文档-程序员宅基地

文章浏览阅读217次。EasyGBS - GB28181 国标方案安装使用文档下载安装包下载,正式使用需商业授权, 功能一致在线演示在线API架构图EasySIPCMSSIP 中心信令服务, 单节点, 自带一个 Redis Server, 随 EasySIPCMS 自启动, 不需要手动运行EasySIPSMSSIP 流媒体服务, 根..._easygbs-windows-2.6.0-23042316使用文档

【Web】记录巅峰极客2023 BabyURL题目复现——Jackson原生链_原生jackson 反序列化链子-程序员宅基地

文章浏览阅读1.2k次,点赞27次,收藏7次。2023巅峰极客 BabyURL之前AliyunCTF Bypassit I这题考查了这样一条链子:其实就是Jackson的原生反序列化利用今天复现的这题也是大同小异,一起来整一下。_原生jackson 反序列化链子

一文搞懂SpringCloud,详解干货,做好笔记_spring cloud-程序员宅基地

文章浏览阅读734次,点赞9次,收藏7次。微服务架构简单的说就是将单体应用进一步拆分,拆分成更小的服务,每个服务都是一个可以独立运行的项目。这么多小服务,如何管理他们?(服务治理 注册中心[服务注册 发现 剔除])这么多小服务,他们之间如何通讯?这么多小服务,客户端怎么访问他们?(网关)这么多小服务,一旦出现问题了,应该如何自处理?(容错)这么多小服务,一旦出现问题了,应该如何排错?(链路追踪)对于上面的问题,是任何一个微服务设计者都不能绕过去的,因此大部分的微服务产品都针对每一个问题提供了相应的组件来解决它们。_spring cloud

Js实现图片点击切换与轮播-程序员宅基地

文章浏览阅读5.9k次,点赞6次,收藏20次。Js实现图片点击切换与轮播图片点击切换<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title></title> <script type="text/ja..._点击图片进行轮播图切换

tensorflow-gpu版本安装教程(过程详细)_tensorflow gpu版本安装-程序员宅基地

文章浏览阅读10w+次,点赞245次,收藏1.5k次。在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cuda的问题。cuda、cudnn。..._tensorflow gpu版本安装

随便推点

物联网时代 权限滥用漏洞的攻击及防御-程序员宅基地

文章浏览阅读243次。0x00 简介权限滥用漏洞一般归类于逻辑问题,是指服务端功能开放过多或权限限制不严格,导致攻击者可以通过直接或间接调用的方式达到攻击效果。随着物联网时代的到来,这种漏洞已经屡见不鲜,各种漏洞组合利用也是千奇百怪、五花八门,这里总结漏洞是为了更好地应对和预防,如有不妥之处还请业内人士多多指教。0x01 背景2014年4月,在比特币飞涨的时代某网站曾经..._使用物联网漏洞的使用者

Visual Odometry and Depth Calculation--Epipolar Geometry--Direct Method--PnP_normalized plane coordinates-程序员宅基地

文章浏览阅读786次。A. Epipolar geometry and triangulationThe epipolar geometry mainly adopts the feature point method, such as SIFT, SURF and ORB, etc. to obtain the feature points corresponding to two frames of images. As shown in Figure 1, let the first image be ​ and th_normalized plane coordinates

开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先抽取关系)_语义角色增强的关系抽取-程序员宅基地

文章浏览阅读708次,点赞2次,收藏3次。开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先关系再实体)一.第二代开放信息抽取系统背景​ 第一代开放信息抽取系统(Open Information Extraction, OIE, learning-based, 自学习, 先抽取实体)通常抽取大量冗余信息,为了消除这些冗余信息,诞生了第二代开放信息抽取系统。二.第二代开放信息抽取系统历史第二代开放信息抽取系统着眼于解决第一代系统的三大问题: 大量非信息性提取(即省略关键信息的提取)、_语义角色增强的关系抽取

10个顶尖响应式HTML5网页_html欢迎页面-程序员宅基地

文章浏览阅读1.1w次,点赞6次,收藏51次。快速完成网页设计,10个顶尖响应式HTML5网页模板助你一臂之力为了寻找一个优质的网页模板,网页设计师和开发者往往可能会花上大半天的时间。不过幸运的是,现在的网页设计师和开发人员已经开始共享HTML5,Bootstrap和CSS3中的免费网页模板资源。鉴于网站模板的灵活性和强大的功能,现在广大设计师和开发者对html5网站的实际需求日益增长。为了造福大众,Mockplus的小伙伴整理了2018年最..._html欢迎页面

计算机二级 考试科目,2018全国计算机等级考试调整,一、二级都增加了考试科目...-程序员宅基地

文章浏览阅读282次。原标题:2018全国计算机等级考试调整,一、二级都增加了考试科目全国计算机等级考试将于9月15-17日举行。在备考的最后冲刺阶段,小编为大家整理了今年新公布的全国计算机等级考试调整方案,希望对备考的小伙伴有所帮助,快随小编往下看吧!从2018年3月开始,全国计算机等级考试实施2018版考试大纲,并按新体系开考各个考试级别。具体调整内容如下:一、考试级别及科目1.一级新增“网络安全素质教育”科目(代..._计算机二级增报科目什么意思

conan简单使用_apt install conan-程序员宅基地

文章浏览阅读240次。conan简单使用。_apt install conan