Redis for Windows -程序员宅基地

技术标签: redis  

来自:http://zhaoshijie.iteye.com/blog/1989970,转载保留出处。

 

关键字:redis for Windows

一、windows下安装redis

1:首先下载redis:redis-2.0.2.zip (32 bit),解压。
从下面地址下:http://code.google.com/p/servicestack/wiki/RedisWindowsDownload,看到下面有redis-2.0.2.zip (32 bit),就是他了,下载完成后,解压到D:\redis-2.0.2.
2:创建redis.conf文件:
这是一个配置文件,指定了redis的监听端口,timeout等。如下面有:port 6379。
把下面内容COPY到一新建文件中,取名redis.conf,再保存到redis-2.0.2目录下:


# Redis configuration file example

# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize no

# When run as a daemon, Redis write a pid file in /var/run/redis.pid by default.
# You can specify a custom pid file location here.
pidfile /var/run/redis.pid

# Accept connections on the specified port, default is 6379
port 6379

# If you want you can bind a single interface, if the bind option is not
# specified all the interfaces will listen for connections.
#
# bind 127.0.0.1

# Close the connection after a client is idle for N seconds (0 to disable)
timeout 300

# Set server verbosity to 'debug'
# it can be one of:
# debug (a lot of information, useful for development/testing)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel debug

# Specify the log file name. Also 'stdout' can be used to force
# the demon to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile stdout

# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16

################################ SNAPSHOTTING  #################################
#
# Save the DB on disk:
#
#   save <seconds> <changes>
#
#   Will save the DB if both the given number of seconds and the given
#   number of write operations against the DB occurred.
#
#   In the example below the behaviour will be to save:
#   after 900 sec (15 min) if at least 1 key changed
#   after 300 sec (5 min) if at least 10 keys changed
#   after 60 sec if at least 10000 keys changed
save 900 1
save 300 10
save 60 10000

# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes

# The filename where to dump the DB
dbfilename dump.rdb

# For default save/load DB in/from the working directory
# Note that you must specify a directory not a file name.
dir ./

################################# REPLICATION #################################

# Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. Note that the configuration is local to the slave
# so for example it is possible to configure the slave to save the DB with a
# different interval, or to listen to another port, and so on.
#
# slaveof <masterip> <masterport>

# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth <master-password>

################################## SECURITY ###################################

# Require clients to issue AUTH <PASSWORD> before processing any other
# commands.  This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# requirepass foobared

################################### LIMITS ####################################

# Set the max number of connected clients at the same time. By default there
# is no limit, and it's up to the number of file descriptors the Redis process
# is able to open. The special value '0' means no limts.
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 128

# Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys with an
# EXPIRE set. It will try to start freeing keys that are going to expire
# in little time and preserve keys with a longer time to live.
# Redis will also try to remove objects from free lists if possible.
#
# If all this fails, Redis will start to reply with errors to commands
# that will use more memory, like SET, LPUSH, and so on, and will continue
# to reply to most read-only commands like GET.
#
# WARNING: maxmemory can be a good idea mainly if you want to use Redis as a
# 'state' server or cache, not as a real DB. When Redis is used as a real
# database the memory usage will grow over the weeks, it will be obvious if
# it is going to use too much memory in the long run, and you'll have the time
# to upgrade. With maxmemory after the limit is reached you'll start to get
# errors for write operations, and this may even lead to DB inconsistency.
#
# maxmemory <bytes>

############################## APPEND ONLY MODE ###############################

# By default Redis asynchronously dumps the dataset on disk. If you can live
# with the idea that the latest records will be lost if something like a crash
# happens this is the preferred way to run Redis. If instead you care a lot
# about your data and don't want to that a single record can get lost you should
# enable the append only mode: when this mode is enabled Redis will append
# every write operation received in the file appendonly.log. This file will
# be read on startup in order to rebuild the full dataset in memory.
#
# Note that you can have both the async dumps and the append only file if you
# like (you have to comment the "save" statements above to disable the dumps).
# Still if append only mode is enabled Redis will load the data from the
# log file at startup ignoring the dump.rdb file.
#
# The name of the append only file is "appendonly.log"
#
# IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
# log file in background when it gets too big.

appendonly no

# The fsync() call tells the Operating System to actually write data on disk
# instead to wait for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log . Slow, Safest.
# everysec: fsync only if one second passed since the last fsync. Compromise.
#
# The default is "always" that's the safer of the options. It's up to you to
# understand if you can relax this to "everysec" that will fsync every second
# or to "no" that will let the operating system flush the output buffer when
# it want, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting).

appendfsync always
# appendfsync everysec
# appendfsync no

############################### ADVANCED CONFIG ###############################

# Glue small output buffers together in order to send small replies in a
# single TCP packet. Uses a bit more CPU but most of the times it is a win
# in terms of number of queries per second. Use 'yes' if unsure.
glueoutputbuf yes

# Use object sharing. Can save a lot of memory if you have many common
# string in your dataset, but performs lookups against the shared objects
# pool so it uses more CPU and can be a bit slower. Usually it's a good
# idea.
#
# When object sharing is enabled (shareobjects yes) you can use
# shareobjectspoolsize to control the size of the pool used in order to try
# object sharing. A bigger pool size will lead to better sharing capabilities.
# In general you want this value to be at least the double of the number of
# very common strings you have in your dataset.
#
# WARNING: object sharing is experimental, don't enable this feature
# in production before of Redis 1.0-stable. Still please try this feature in
# your development environment so that we can test it better.
# shareobjects no
# shareobjectspoolsize 1024

3:在cmd下面执行以下命令,指定它使用我们的redis.conf,同时也是启动,把redis运行起来,这里指定用redis.conf的配置运行服务器
D:\redis-2.0.2>redis-server.exe redis.conf

4:开一新DOS窗口cmd.执行以下命令,这是Redis的客户端程序:
redis-cli.exe -h 172.18.5.1 -p 6379
172.18.5.1是我本机IP地址,端口6379就是上面配置文件中指定的监听端口
执行完成后,应该能看到redis启动了,这时在第一个cmd窗口可以看到连接信息。
执行一条保存key value操作
set mystock 300156
再查询一下
get mystock

=================================

可以完全参考以下地址的资料:

http://hi.baidu.com/zchare/blog/item/bd6034f325d1c65f352acca1.html(very good,安全可以成功)

http://cardyn.iteye.com/blog/794194
http://zhaohaolin.iteye.com/blog/1017561


二、redis配置选项:

指定redis的配置文件,如没有指定,则使用默认设置
D:\redis-2.0.0-rc2>redis-server.exe redis.conf

redis.conf配置选项如下
daemonize 是否以后台进程运行,默认为no
pidfile 如以后台进程运行,则需指定一个pid,默认为/var/run/redis.pid
bind 绑定主机IP,默认值为127.0.0.1(注释)
port 监听端口,默认为6379
timeout 超时时间,默认为300(秒)
loglevel 日志记录等级,有4个可选值,debug,verbose(默认值),notice,warning
logfile 日志记录方式,默认值为stdout
databases 可用数据库数,默认值为16,默认数据库为0
save <seconds> <changes> 指出在多长时间内,有多少次更新操作,就将数据同步到数据文件。这个可以多个条件配合,比如默认配置文件中的设置,就设置了三个条件。
save 900 1  900秒(15分钟)内至少有1个key被改变
save 300 10  300秒(5分钟)内至少有300个key被改变
save 60 10000  60秒内至少有10000个key被改变
rdbcompression 存储至本地数据库时是否压缩数据,默认为yes
dbfilename 本地数据库文件名,默认值为dump.rdb
dir 本地数据库存放路径,默认值为 ./
slaveof <masterip> <masterport> 当本机为从服务时,设置主服务的IP及端口(注释)
masterauth <master-password> 当本机为从服务时,设置主服务的连接密码(注释)
requirepass 连接密码(注释)
maxclients 最大客户端连接数,默认不限制(注释)
maxmemory <bytes> 设置最大内存,达到最大内存设置后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理后,任到达最大内存设置,将无法再进行写入操作。(注释)
appendonly 是否在每次更新操作后进行日志记录,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认值为no
appendfilename 更新日志文件名,默认值为appendonly.aof(注释)
appendfsync 更新日志条件,共有3个可选值。no表示等操作系统进行数据缓存同步到磁盘,always表示每次更新操作后手动调用fsync()将数据写到磁盘,everysec表示每秒同步一次(默认值)。
vm-enabled 是否使用虚拟内存,默认值为no
vm-swap-file 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-max-memory 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0。

Redis官方文档对VM的使用提出了一些建议:
当你的key很小而value很大时,使用VM的效果会比较好.因为这样节约的内存比较大.
当你的key不小时,可以考虑使用一些非常方法将很大的key变成很大的value,比如你可以考虑将key,value组合成一个新的value.
最好使用linux ext3 等对稀疏文件支持比较好的文件系统保存你的swap文件.
vm-max-threads这个参数,可以设置访问swap文件的线程数,设置最好不要超过机器的核数.如果设置为0,那么所有对swap文件的操作都是串行的.可能会造成比较长时间的延迟,但是对数据完整性有很好的保证.redis-cli.exe:命令行客户端,测试用
D:\redis-2.0.0-rc2>redis-cli.exe -h 127.0.0.1 -p 6379

三、redis java操作(包括list/Map/删除/新增/覆盖/排序等都支持)

    import org.junit.After; 
    import org.junit.Before; 
    import org.junit.Test; 
    import redis.clients.jedis.Jedis; 
    import redis.clients.jedis.JedisPool; 
    import redis.clients.jedis.JedisPoolConfig; 
     
    import javax.sound.midi.Soundbank; 
    import java.util.*; 
     
    /**
     * @author: flychao88
     * Time: 2012.5.7 16:23:15
     */ 
    public class RedisTest { 
        JedisPool pool; 
        Jedis jedis; 
        @Before 
        public void setUp() { 
            pool = new JedisPool(new JedisPoolConfig(), "172.16.100.184"); 
     
            jedis = pool.getResource(); 
            jedis.auth("password"); 
        } 
     
        /**
         * Redis存储初级的字符串
         * CRUD
         */ 
        @Test 
        public void testBasicString(){ 
            //-----添加数据---------- 
            jedis.set("name","minxr");//向key-->name中放入了value-->minxr 
            System.out.println(jedis.get("name"));//执行结果:minxr 
     
            //-----修改数据----------- 
            //1、在原来基础上修改 
            jedis.append("name","jarorwar");   //很直观,类似map 将jarorwar append到已经有的value之后 
            System.out.println(jedis.get("name"));//执行结果:minxrjarorwar 
     
            //2、直接覆盖原来的数据 
            jedis.set("name","闵晓荣"); 
            System.out.println(jedis.get("name"));//执行结果:闵晓荣 
     
            //删除key对应的记录 
            jedis.del("name"); 
            System.out.println(jedis.get("name"));//执行结果:null 
     
            /**
             * mset相当于
             * jedis.set("name","minxr");
             * jedis.set("jarorwar","闵晓荣");
             */ 
            jedis.mset("name","minxr","jarorwar","闵晓荣"); 
            System.out.println(jedis.mget("name","jarorwar")); 
     
        } 
     
        /**
         * jedis操作Map
         */ 
        @Test 
        public void testMap(){ 
            Map<String,String> user=new HashMap<String,String>(); 
            user.put("name","minxr"); 
            user.put("pwd","password"); 
            jedis.hmset("user",user); 
            //取出user中的name,执行结果:[minxr]-->注意结果是一个泛型的List 
            //第一个参数是存入redis中map对象的key,后面跟的是放入map中的对象的key,后面的key可以跟多个,是可变参数 
            List<String> rsmap = jedis.hmget("user", "name"); 
            System.out.println(rsmap); 
     
            //删除map中的某个键值 
    //        jedis.hdel("user","pwd"); 
            System.out.println(jedis.hmget("user", "pwd")); //因为删除了,所以返回的是null 
            System.out.println(jedis.hlen("user")); //返回key为user的键中存放的值的个数1 
            System.out.println(jedis.exists("user"));//是否存在key为user的记录 返回true 
            System.out.println(jedis.hkeys("user"));//返回map对象中的所有key  [pwd, name] 
            System.out.println(jedis.hvals("user"));//返回map对象中的所有value  [minxr, password] 
     
            Iterator<String> iter=jedis.hkeys("user").iterator(); 
            while (iter.hasNext()){ 
                String key = iter.next(); 
                System.out.println(key+":"+jedis.hmget("user",key)); 
            } 
     
        } 
     
        /**
         * jedis操作List
         */ 
        @Test 
        public void testList(){ 
            //开始前,先移除所有的内容 
            jedis.del("java framework"); 
            System.out.println(jedis.lrange("java framework",0,-1)); 
           //先向key java framework中存放三条数据 
           jedis.lpush("java framework","spring"); 
           jedis.lpush("java framework","struts"); 
           jedis.lpush("java framework","hibernate"); 
           //再取出所有数据jedis.lrange是按范围取出, 
           // 第一个是key,第二个是起始位置,第三个是结束位置,jedis.llen获取长度 -1表示取得所有 
           System.out.println(jedis.lrange("java framework",0,-1)); 
        } 
     
        /**
         * jedis操作Set
         */ 
        @Test 
        public void testSet(){ 
            //添加 
            jedis.sadd("sname","minxr"); 
            jedis.sadd("sname","jarorwar"); 
            jedis.sadd("sname","闵晓荣"); 
            jedis.sadd("sanme","noname"); 
            //移除noname 
            jedis.srem("sname","noname"); 
            System.out.println(jedis.smembers("sname"));//获取所有加入的value 
            System.out.println(jedis.sismember("sname", "minxr"));//判断 minxr 是否是sname集合的元素 
            System.out.println(jedis.srandmember("sname")); 
            System.out.println(jedis.scard("sname"));//返回集合的元素个数 
        } 
     
        @Test 
        public void test() throws InterruptedException { 
            //keys中传入的可以用通配符 
            System.out.println(jedis.keys("*")); //返回当前库中所有的key  [sose, sanme, name, jarorwar, foo, sname, java framework, user, braand] 
            System.out.println(jedis.keys("*name"));//返回的sname   [sname, name] 
            System.out.println(jedis.del("sanmdde"));//删除key为sanmdde的对象  删除成功返回1 删除失败(或者不存在)返回 0 
            System.out.println(jedis.ttl("sname"));//返回给定key的有效时间,如果是-1则表示永远有效 
            jedis.setex("timekey", 10, "min");//通过此方法,可以指定key的存活(有效时间) 时间为秒 
            Thread.sleep(5000);//睡眠5秒后,剩余时间将为<=5 
            System.out.println(jedis.ttl("timekey"));   //输出结果为5 
            jedis.setex("timekey", 1, "min");        //设为1后,下面再看剩余时间就是1了 
            System.out.println(jedis.ttl("timekey"));  //输出结果为1 
            System.out.println(jedis.exists("key"));//检查key是否存在 
            System.out.println(jedis.rename("timekey","time")); 
            System.out.println(jedis.get("timekey"));//因为移除,返回为null 
            System.out.println(jedis.get("time")); //因为将timekey 重命名为time 所以可以取得值 min 
     
            //jedis 排序 
            //注意,此处的rpush和lpush是List的操作。是一个双向链表(但从表现来看的) 
            jedis.del("a");//先清除数据,再加入数据进行测试 
            jedis.rpush("a", "1"); 
            jedis.lpush("a","6"); 
            jedis.lpush("a","3"); 
            jedis.lpush("a","9"); 
            System.out.println(jedis.lrange("a",0,-1));// [9, 3, 6, 1] 
            System.out.println(jedis.sort("a")); //[1, 3, 6, 9]  //输入排序后结果 
            System.out.println(jedis.lrange("a",0,-1)); 
     
        } 




六、redis和memcached比较

1、memcached多线程    redis单线程

2、memcached支持简单的key/value  redis支持最为常用的数据类型主要由五种:String、Hash、List、Set和Sorted Set(最吸引人的就此,而且可以对list排序等)

3、memcached客户端实现分布式   redis服务器端实现分布式

4、

>>> 附件下载:


 

>>> 镜像下载:

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/kenkao/article/details/84739513

智能推荐

再见2018,你好2019!-程序员宅基地

又到了一年一度写年度总结的时候,不知不觉2018年就过去了,回想过去一年,做了几个重要的选择,由于各种原因把,今年的技术没有提升得那么快了,也许是自己的精力更多的投入到别的方面把,也是值得自己反思的一件事情。2018年的目标实现了吗?翻当初的记录,设立的flag如下:1.增重20斤,我要纯肌肉,不要脂肪!2.继续深入学习技术呀,Android插件化,Java ee知识3.新的尝试,例如写...

嵌入式芯片体系结构介绍_嵌入式芯片的结构-程序员宅基地

嵌入式芯片体系结构介绍http://blog.csdn.net/orange_os/article/details/7566783根据处理器的应用范围及处理能力可以将处理器分为嵌入式微处理器、嵌入式微控制器、嵌入式DSP处理器、嵌入式片上系统。1.嵌入式微处理器(Micro Processor Unit,MPU)   嵌入式微处理器是由通用计算机中的CPU演变而_嵌入式芯片的结构

生物信息与数据挖掘_生物信息计算与数据挖掘-程序员宅基地

接触一段时间的蛋白质组的生物信息数据处理,我认为有三个方面技能是学习生物信息必备的。1 编程技能,包括以下几种技能。(1)用R语言做统计与数据可视化。(2)python做数据处理,代码更简洁一点。(3)Linux系统,目前主要用Maxquant 软件在Linux 系统搜库。(4)Matlab接触不多,也有人用这个软件处理质谱数据。2 数学与算法。数据挖掘的下限是编程技能,上限是数学能力。包括以下技..._生物信息计算与数据挖掘

成为高效面试官的那些套路-程序员宅基地

作为组织技术骨干、leader、部门主管的你,都会有面试官的经历,如何练就“火眼金睛”,驾轻就熟,成为高效面试官?估计大多数人没有经历过专门的面试官培训,笔者也曾经趟过很多“坑”,把自己的经验和教训,提炼成套路,让作为面试官的你尽快牛起来!作为准备面试的你,如果深知面试官的套路和方法,对于准备及应对面试无疑是大有裨益的,所谓“知己知彼,百战不殆”嘛。本场Chat主要内容包括:面试是否要分层、...

Ingress 访问日志分析与监控-程序员宅基地

阿里云Ingress除了提供外部可访问的 URL、负载均衡、SSL、基于名称的虚拟主机外,还支持将所有用户的HTTP请求日志记录到标准输出中。同时Ingress访问日志与阿里云日志服务打通,您可以使用日志服务快速创建日志分析和监控大盘。前提条件安装日志组件。集群创建时,默认会安装日志组件,如未安装,请参考使用日志服务进行Kubernetes日志采集进行手动安装。..._ingress 请求日志

RandLA-Net论文理解:大规模室外点云语义分割-程序员宅基地

RandLA-Net论文理解论文下载代码下载概述论文针对大规模室外点云语义分割提出两个想法:1.分析了一些降采样方法,认为随机采样从效率和可行性上更适合大规模点云的采样2.为了对抗随机采样带来的关键信息丢失问题,提出局部特征采样器随机采样最重要的是由于随机采样的计算复杂度为O(1),所以与输入点的总数无关。总的来说,FPS、IDIS和GS在计算上太昂贵,无法应用于大规模点云。CRS方法的内存占用过大,PGS 很难学习。相比之下,随机采样有两个优点:1)它具有显著的计算效率,因为它与输入点的

随便推点

11、使用jQuery完成(首页定时弹出广告图片、表格隔行换色、复选框的全选和全不选、省市二级联动、下拉列表左右选择、注册页面表单校验)_jquery 弹出一个图片广告_天 阳 在 线€的博客-程序员宅基地

Web目录标题01_使用jQuery完成首页定时弹出广告图片02_使用jQuery完成表格隔行变色03_使用jQuery完成复选框的全选和全不选04_使用jQuery完成省市二级联动05_使用jQuery完成下拉列表左右选择06_使用jQuery完成注册页面表单校验01_使用jQuery完成首页定时弹出广告图片<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>div_jquery 弹出一个图片广告

开源分布式数据库中间件方案-Apache ShardingSphere_org.apache.shardingsphere-程序员宅基地

1.概述业务飞速发展导致了数据规模的急速膨胀,单机数据库已经无法适应互联网业务的发展 传统的将数据集中存储至单一数据节点的解决方案,在容量、性能、可用性和运维成本这三方面已经难于满足互联网的海量数据场景。我们在单库单表数据量超过一定容量水位的情况下,索引树层级增加,磁盘 IO 也很可能出现压力,会导致很多问题。 从性能方面来说,由于关系型数据库大多采用 B+树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中式_org.apache.shardingsphere

DQL、DML、DDL、DCL的概念与区别_dnl,dqlddl-程序员宅基地

转载:https://www.cnblogs.com/fan-yuan/p/7879353.html_dnl,dqlddl

机器学习笔记:kMeans聚类_kmeans聚类常用数据集-程序员宅基地

kMeans聚类优点:容易实现。 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。 适用数据类型:数值型数据K-均值算法: 先随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,具体来讲为每个点找距其最近的质心,并将其分配给该质心所对应的簇。 再每个簇更新质心为该簇所有点的平均值。Python 3.6实现kMeans算法import numpy as n_kmeans聚类常用数据集

Python3+OpenCV(十一):空间域滤波复原-程序员宅基地

1、均值滤波器(1) 算术均值滤波器(2) 几何均值滤波器(3) 谐波均值滤波器(4) 逆谐波均值滤波器(5) Python实现2、顺序统计滤波器(1) 中值滤波器(2) 修正后的阿尔法均值滤波器(3) 最大/最小滤波器(4) 中点滤波器(5) Python实现空间域滤波复原 是在已知 噪声模型 的基础上,对噪声的空间域滤波主要包括 :均值滤波器 (算术均值滤波器、几何均值滤波器、谐波均值滤波器、逆谐波均值滤波器)顺序统计滤波器 (中值滤波器、二维中值滤波器、修正后的阿尔法均值滤波器、最大/..