Nvidia jetson nano | Tensorflow-gpu | TensorFlow object detection API | mobilnet-ssd | 训练 自己的数据集_n.n.imoom,tf-程序员宅基地

技术标签: tensorflow  nano  object-detection-api  mobilnet-ssd  训练自己的数据  jetson  

参考自:

      https://www.cnblogs.com/leviatan/p/10740105.html

      https://www.cnblogs.com/gezhuangzhuang/p/10613468.html

关于如何安装tensorflow-gpu参考我这篇博客

      https://blog.csdn.net/ourkix/article/details/103577082

 

目录

下载文件

依赖安装 如按之前博客来的话 应该已经安装好了

安装 object_detection 库

设置 PYTHONPATH

测试 object_detection 库是否安装成功

训练自己的数据集

1. 在自己的voc数据格式文件夹内,新建 train_test_split.py 把xml文件数据集分为了train、test、validation三部分,并存储在Annotations文件夹中,训练验证集占80%,测试集占20%。训练集占训练验证集的80%。代码如下:

2. 把xml转换成csv文件,xml_to_csv.py 将生成的csv文件放在 object_detection/data/

3. 生成tfrecord文件,在research目录下建立generate_tfrecord.py

 

训练

1. 在object_detection/data文件夹下创建标签分类的配置文件(labelmap.pbtxt),需要检测几种目标,将创建几个id,代码如下:

2. 配置管道配置文件,找到object_detection/samples/config/ssd_mobilenet_v1_coco.config,复制到data文件夹下。修改后的代码如下:

3.下载预训练模型(用我上传的文件的话,已经在object_detection/ssd_model/ssd_mobilenet目录下了)

4. 开始训练(这个train.py 文件可能就在object_detection目录下 也可能在object_detection/legacy下)

5.训练完成后,运行 export_inference_graph.py 脚本将训练出的模型固化成 TensorFlow 的 .pb 模型,其中 trained_checkpoint_prefix 要设置成 model.ckpt-[step],其中 step 要与训练迭代次数相同

6.测试模型(在object_detection目录下创建文件seahorse_ssd_detect.py)


 

 

下载文件

下载地址: https://github.com/tensorflow/models

也可以使用我上传的里面有数据集和预训练文件 和 测试图片,文件有点大分卷下载了,要都下载下来一起解压

下载地址:https://download.csdn.net/download/ourkix/12068490

下载地址:https://download.csdn.net/download/ourkix/12068504

 

下载后得到一个 models-master.zip 文件,解压后移动到 (关于如何在文件查看其中看到隐藏的文件 Ctrl + H 快捷键)

/home/nvidia/.local/lib/python3.6/site-packages/tensorflow

 文件夹下,并重命名为 models

 

如果用我上传的,下载解压后是个models文件夹,里面还有个models,进去吧里面的models复制到

/home/nvidia/.local/lib/python3.6/site-packages/tensorflow

 文件夹下

依赖安装 如按之前博客来的话 应该已经安装好了

python3 -m pip install pillow --user
python3 -m pip install lxml --user
python3 -m pip install matplotlib --user
python3 -m pip install pandas --user

 

这里查看自己是否有安装 protobuf

protoc --version

出现

libprotoc 3.0.0

 代表有安装

如没安装

sudo apt-get install -y python3-protobuf
#也可以用pip
python3 -m pip install protobuf --user

进入 models/research/ 目录,并编译 protobuf (这里可能会报错 没有pandas 库 安装就是了)

cd /home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research
protoc object_detection/protos/*.proto --python_out=.

安装 object_detection 库

python3 setup.py build
python3 setup.py install

设置 PYTHONPATH

编辑  .bashrc文件

sudo gedit ~/.bashrc

 最后加上

export PYTHONPATH=$PYTHONPATH:/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research
export PYTHONPATH=$PYTHONPATH:/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/slim

保存,使环境生效

source ~/.bashrc

测试 object_detection 库是否安装成功

cd /home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research
python3 object_detection/builders/model_builder_test.py

运行测试目标检测脚本测试 在object_detection目录下有个 object-detection-turorial.ipynb 这里不用jupyter-notebook,改用python,更方便。

新建一个文件 object-detection-turorial.py

touch object-detection-turorial.py

编辑,写入

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import matplotlib

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')



import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')



from utils import label_map_util

from utils import visualization_utils as vis_util


global output_num
global output_img_dic

matplotlib.use('TkAgg')

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

print(PATH_TO_LABELS)


# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

output_num = 1
output_img_dic = r'\output_images'










opener = urllib.request.URLopener()
print("--\n")
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
print("--\n")
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())

print("--\n")


detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.compat.v1.GraphDef()
  with tf.io.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

print("--\n")

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

print("--\n")

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)






def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.compat.v1.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.compat.v1.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict




for image_path in TEST_IMAGE_PATHS:
  image = Image.open(image_path)
  # the array based representation of the image will be used later in order to prepare the
  # result image with boxes and labels on it.
  image_np = load_image_into_numpy_array(image)
  # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  image_np_expanded = np.expand_dims(image_np, axis=0)
  # Actual detection.
  output_dict = run_inference_for_single_image(image_np, detection_graph)
  # Visualization of the results of a detection.
  vis_util.visualize_boxes_and_labels_on_image_array(
      image_np,
      output_dict['detection_boxes'],
      output_dict['detection_classes'],
      output_dict['detection_scores'],
      category_index,
      instance_masks=output_dict.get('detection_masks'),
      use_normalized_coordinates=True,
      line_thickness=8)
  plt.figure(figsize=IMAGE_SIZE)
  print(1,image_np)
  plt.imshow(image_np)
  plt.show()
  
  if not os.path.exists(output_img_dic):
      os.mkdir(output_img_dic)
  output_img_path = os.path.join(output_img_dic,str(output_num)+".png")
  plt.savefig(output_img_path)

保存,运行

python3 object-detection-turorial.py

等待运行,nano运行比较久,要下载文件什么的,等个2-3分钟。

 

训练自己的数据集

    生成tfrecord文件

VOC数据集目录结构是这样的

我在object_detection目录下建立了ssd_model目录,里面放了VOCdeckit,我会提供整个models文件夹内容(包括预训练模型,海马数据集,测试数据),你们可以按我的来

|--VOCdevkit

           |--VOC2007

                    |--Annotations

                    |--ImageSets

                              |--Layout

                              |--Main

                              |--Segmentation

                    |--JPEGImages

1. 在自己的voc数据格式文件夹内,新建 train_test_split.py 把xml文件数据集分为了train、test、validation三部分,并存储在Annotations文件夹中,训练验证集占80%,测试集占20%。训练集占训练验证集的80%。代码如下:

import os  
import random  
import time  
import shutil

xmlfilepath=r'./Annotations'  
saveBasePath=r"./Annotations"

trainval_percent=0.8  
train_percent=0.8  
total_xml = os.listdir(xmlfilepath)  
num=len(total_xml)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(trainval,tr)  
print("train and val size",tv)  
print("train size",tr) 

start = time.time()

test_num=0  
val_num=0  
train_num=0  

for i in list:  
    name=total_xml[i]
    if i in trainval:  #train and val set 
        if i in train: 
            directory="train"  
            train_num += 1  
            xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  
            if(not os.path.exists(xml_path)):  
                os.mkdir(xml_path)  
            filePath=os.path.join(xmlfilepath,name)  
            newfile=os.path.join(saveBasePath,os.path.join(directory,name))  
            shutil.copyfile(filePath, newfile)
        else:
            directory="validation"  
            xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  
            if(not os.path.exists(xml_path)):  
                os.mkdir(xml_path)  
            val_num += 1  
            filePath=os.path.join(xmlfilepath,name)   
            newfile=os.path.join(saveBasePath,os.path.join(directory,name))  
            shutil.copyfile(filePath, newfile)

    else:
        directory="test"  
        xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  
        if(not os.path.exists(xml_path)):  
                os.mkdir(xml_path)  
        test_num += 1  
        filePath=os.path.join(xmlfilepath,name)  
        newfile=os.path.join(saveBasePath,os.path.join(directory,name))  
        shutil.copyfile(filePath, newfile)

end = time.time()  
seconds=end-start  
print("train total : "+str(train_num))  
print("validation total : "+str(val_num))  
print("test total : "+str(test_num))  
total_num=train_num+val_num+test_num  
print("total number : "+str(total_num))  
print( "Time taken : {0} seconds".format(seconds))

2. 把xml转换成csv文件,xml_to_csv.py 将生成的csv文件放在 object_detection/data/

import os  
import glob  
import pandas as pd  
import xml.etree.ElementTree as ET 

def xml_to_csv(path):  
    xml_list = []  
    for xml_file in glob.glob(path + '/*.xml'):  
        tree = ET.parse(xml_file)  
        root = tree.getroot()
        
        print(root.find('filename').text)  
        for member in root.findall('object'): 
            value = (root.find('filename').text,  
                int(root.find('size')[0].text),   #width  
                int(root.find('size')[1].text),   #height  
                member[0].text,  
                int(member[4][0].text),  
                int(float(member[4][1].text)),  
                int(member[4][2].text),  
                int(member[4][3].text)  
                )  
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)  
    return xml_df      

def main():  
    for directory in ['train','test','validation']:  
        xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))  

        xml_df = xml_to_csv(xml_path)  
        # xml_df.to_csv('whsyxt.csv', index=None)  
        xml_df.to_csv('/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/object_detection/data/seahorse_{}_labels.csv'.format(directory), index=None)  
        print('Successfully converted xml to csv.')

main()  

3. 生成tfrecord文件,在research目录下建立generate_tfrecord.py

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

#Usage:
  # From tensorflow/models/
  # Create train data:
  #python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv  --output_path=train.record
  # Create test data:
  #python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record



import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

os.chdir('/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/')

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
        # 你的所有类别
    if row_label == 'seahorse':
            return 1
    else:
        return None

def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), 'object_detection/ssd_model/VOCdevkit/VOC2007/JPEGImages/')
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    num = 0
    for group in grouped:
        num += 1
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())
        if (num % 100 == 0):    # 每完成100个转换,打印一次
            print(num)

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    tf.app.run()

主要是在 row_label 这里要添加上你标注的类别,字符串 row_label 应于labelImg中标注的名称相同。同样 path 为图片的路径。

执行生成前要去改一下cvs文件,把3个文件里面的jpeg改成jpg,这里是我图片后缀问题,不改会报错。

cd /home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research

python3 generate_tfrecord.py --csv_input=object_detection/data/seahorse_train_labels.csv --output_path=object_detection/data/seahorse_train.tfrecord

generate_tfrecord.py 需要在research目录下,也就是object_detection的上级目录,因为在脚本中使用了 object_detection.utils,如果在 object_detection 下执行命令会报错(No module named object_detection)。

类似的,我们可以输入如下命令,将验证集和测试集也转换为tfrecord格式。

python3 generate_tfrecord.py --csv_input=object_detection/data/seahorse_validation_labels.csv --output_path=object_detection/data/seahorse_validation.tfrecord
python3 generate_tfrecord.py --csv_input=object_detection/data/seahorse_test_labels.csv --output_path=object_detection/data/seahorse_test.tfrecord

 

训练

1. 在object_detection/data文件夹下创建标签分类的配置文件(labelmap.pbtxt),需要检测几种目标,将创建几个id,代码如下:

item {
  id: 1    # id 从1开始编号
  name: 'seahorse'
}

2. 配置管道配置文件,找到object_detection/samples/config/ssd_mobilenet_v1_coco.config,复制到data文件夹下。修改后的代码如下:

# SSD with Mobilenet v1 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  ssd {
#修改,分类的总数
    num_classes: 2
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
#修改,批次大小,nano的话在图形界面下跑4会出现卡顿OOM,内存不足,2的话勉强可以跑。可以在不启动图形界面跑会好些
  batch_size: 2
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
#修改,初始学习率
          initial_learning_rate: 0.0001
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
#修改,预训练模型
  fine_tune_checkpoint: "ssd_model/ssd_mobilenet/model.ckpt"
  from_detection_checkpoint: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
#修改,迭代总次数
  num_steps: 5000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
#修改,训练数据 按理这里是seahorse_train.tfrecord
    input_path: "data/seahorse.tfrecord"
  }
#修改,labelmap路径
  label_map_path: "data/labelmap.pbtxt"
}

eval_config: {
  num_examples: 8000
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
#修改,训练验证数据
    input_path: "data/seahorse_validation.tfrecord"
  }
#修改,labelmap路径
  label_map_path: "data/labelmap.pbtxt"
  shuffle: false
  num_readers: 1
}

3.下载预训练模型(用我上传的文件的话,已经在object_detection/ssd_model/ssd_mobilenet目录下了)

下载 ssd_mobilenet 至 ssd_model/ 目录下,解压并重命名为 ssd_mobilenet

ssd_mobilenet: http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz

tar zxvf ssd_mobilenet_v1_coco_11_06_2017.tar.gz
mv ssd_mobilenet_v1_coco_11_06_2017 ssd_mobilenet

将 ssd_mobilenet_v1_coco.config 中 fine_tune_checkpoint 修改为如下格式的路径(上面已经改好)

fine_tune_checkpoint: "ssd_model/ssd_mobilenet/model.ckpt"

 

关闭图形界面,训练时再关闭(看你的平台情况而定,训练不了就关闭)ps:我nano在图形界面勉强可以训练

# ubuntu关闭图形用户界面
sudo systemctl set-default multi-user.target
sudo reboot
 
# ubuntu启用图形用户界面
sudo systemctl set-default graphical.target

4. 开始训练(这个train.py 文件可能就在object_detection目录下 也可能在object_detection/legacy下)

python3 legacy/train.py --logtostderr --train_dir=training/ --pipeline_config_path=data/ssd_mobilenet_v1_coco.config

5.训练完成后,运行 export_inference_graph.py 脚本将训练出的模型固化成 TensorFlow 的 .pb 模型,其中 trained_checkpoint_prefix 要设置成 model.ckpt-[step],其中 step 要与训练迭代次数相同

python3 ./object_detection/export_inference_graph.py --input_type image_tensor --pipeline_config_path ./object_detection/ssd_model/ssd_mobilenet_v1_coco.config --trained_checkpoint_prefix ./object_detection/training/model.ckpt-5000 --output_directory ./object_detection/ssd_model/model/

转换后生成的 .pb 模型位于 object_detection/ssd_model/model/ 目录下

6.测试模型(在object_detection目录下创建文件seahorse_ssd_detect.py)

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

import cv2

if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
  raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')



from utils import label_map_util

from utils import visualization_utils as vis_util


global output_num
global output_img_dic

matplotlib.use('TkAgg')



# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH =  'ssd_model/model/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'labelmap.pbtxt')

print(PATH_TO_LABELS)


# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(3, 7) ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

output_num = 1
output_img_dic = r'\output_images'












detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.compat.v1.GraphDef()
  with tf.io.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

print("--\n")

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

print("--\n")

def load_image_into_numpy_array(image):
  (im_width, im_height) = image.size
  return np.array(image.getdata()).reshape(
      (im_height, im_width, 3)).astype(np.uint8)






def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.compat.v1.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.compat.v1.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict






def detect(imgfile):
    #origimg = cv2.imread(imgfile)
    image = Image.open(imgfile)

    image_np = load_image_into_numpy_array(image)
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    # Actual detection.
    output_dict = run_inference_for_single_image(image_np, detection_graph)
    # Visualization of the results of a detection.
    vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        output_dict['detection_boxes'],
        output_dict['detection_classes'],
        output_dict['detection_scores'],
        category_index,
        instance_masks=output_dict.get('detection_masks'),
        use_normalized_coordinates=True,
        line_thickness=8)
    plt.figure(figsize=IMAGE_SIZE)
    print(1,image_np) 

    cv2.imshow("SSD", image_np)
 
    k = cv2.waitKey(0) & 0xff
        #Exit if ESC pressed
    if k == 27 : return False
    return True

test_dir = "/home/nvidia/.local/lib/python3.6/site-packages/tensorflow/models/research/object_detection/seahorseImages"

for f in os.listdir(test_dir):
    if detect(test_dir + "/" + f) == False:
       break

  
#  if not os.path.exists(output_img_dic):
#      os.mkdir(output_img_dic)
#  output_img_path = os.path.join(output_img_dic,str(output_num)+".png")
#  plt.savefig(output_img_path)

测试(任意键下一张图,ESC退出)

python3 seahorse_ssd_detect.py

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ourkix/article/details/103778044

智能推荐

js-选项卡原理_选项卡js原理-程序员宅基地

文章浏览阅读90次。【代码】js-选项卡原理。_选项卡js原理

设计模式-原型模式(Prototype)-程序员宅基地

文章浏览阅读67次。原型模式是一种对象创建型模式,它采用复制原型对象的方法来创建对象的实例。它创建的实例,具有与原型一样的数据结构和值分为深度克隆和浅度克隆。浅度克隆:克隆对象的值类型(基本数据类型),克隆引用类型的地址;深度克隆:克隆对象的值类型,引用类型的对象也复制一份副本。UML图:具体代码:浅度复制:import java.util.List;/*..._prototype 设计模式

个性化政府云的探索-程序员宅基地

文章浏览阅读59次。入选国内首批云计算服务创新发展试点城市的北京、上海、深圳、杭州和无锡起到了很好的示范作用,不仅促进了当地产业的升级换代,而且为国内其他城市发展云计算产业提供了很好的借鉴。据了解,目前国内至少有20个城市确定将云计算作为重点发展的产业。这势必会形成新一轮的云计算基础设施建设的**。由于云计算基础设施建设具有投资规模大,运维成本高,投资回收周期长,地域辐射性强等诸多特点,各地在建...

STM32问题集之BOOT0和BOOT1的作用_stm32boot0和boot1作用-程序员宅基地

文章浏览阅读9.4k次,点赞2次,收藏20次。一、功能及目的 在每个STM32的芯片上都有两个管脚BOOT0和BOOT1,这两个管脚在芯片复位时的电平状态决定了芯片复位后从哪个区域开始执行程序。BOOT1=x BOOT0=0 // 从用户闪存启动,这是正常的工作模式。BOOT1=0 BOOT0=1 // 从系统存储器启动,这种模式启动的程序_stm32boot0和boot1作用

C语言函数递归调用-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏22次。C语言函数递归调用_c语言函数递归调用

明日方舟抽卡模拟器wiki_明日方舟bilibili服-明日方舟bilibili服下载-程序员宅基地

文章浏览阅读410次。明日方舟bilibili服是一款天灾驾到战斗热血的创新二次元废土风塔防手游,精妙的二次元纸片人设计,为宅友们源源不断更新超多的纸片人老婆老公们,玩家将扮演废土正义一方“罗德岛”中的指挥官,与你身边的感染者们并肩作战。与同类塔防手游与众不同的几点,首先你可以在这抽卡轻松获得稀有,同时也可以在战斗体系和敌军走位机制看到不同。明日方舟bilibili服设定:1、起因不明并四处肆虐的天灾,席卷过的土地上出..._明日方舟抽卡模拟器

随便推点

Maven上传Jar到私服报错:ReasonPhrase: Repository version policy: SNAPSHOT does not allow version: xxx_repository version policy snapshot does not all-程序员宅基地

文章浏览阅读437次。Maven上传Jar到私服报错:ReasonPhrase: Repository version policy: SNAPSHOT does not allow version: xxx_repository version policy snapshot does not all

斐波那契数列、素数、质数和猴子吃桃问题_斐波那契日-程序员宅基地

文章浏览阅读1.2k次。斐波那契数列(Fibonacci Sequence)是由如下形式的一系列数字组成的:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …上述数字序列中反映出来的规律,就是下一个数字是该数字前面两个紧邻数字的和,具体如下所示:示例:比如上述斐波那契数列中的最后两个数,可以推导出34后面的数为21+34=55下面是一个更长一些的斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,_斐波那契日

PHP必会面试题_//该层循环用来控制每轮 冒出一个数 需要比较的次数-程序员宅基地

文章浏览阅读363次。PHP必会面试题1. 基础篇1. 用 PHP 打印出前一天的时间格式是 2017-12-28 22:21:21? //&gt;&gt;1.当前时间减去一天的时间,然后再格式化echo date('Y-m-d H:i:s',time()-3600*24);//&gt;&gt;2.使用strtotime,可以将任何字符串时间转换成时间戳,仅针对英文echo date('Y-m-d H:i:s',str..._//该层循环用来控制每轮 冒出一个数 需要比较的次数

windows用mingw(g++)编译opencv,opencv_contrib,并install安装_opencv mingw contrib-程序员宅基地

文章浏览阅读1.3k次,点赞26次,收藏26次。windows下用mingw编译opencv貌似不支持cuda,选cuda会报错,我无法解决,所以没选cuda,下面两种编译方式支持。打开cmake gui程序,在下面两个框中分别输入opencv的源文件和编译目录,build-mingw为你创建的目录,可自定义命名。1、如果已经安装Qt,则Qt自带mingw编译器,从Qt安装目录找到编译器所在目录即可。1、如果已经安装Qt,则Qt自带cmake,从Qt安装目录找到cmake所在目录即可。2、若未安装Qt,则安装Mingw即可,参考我的另外一篇文章。_opencv mingw contrib

5个高质量简历模板网站,免费、免费、免费_hoso模板官网-程序员宅基地

文章浏览阅读10w+次,点赞42次,收藏309次。今天给大家推荐5个好用且免费的简历模板网站,简洁美观,非常值得收藏!1、菜鸟图库https://www.sucai999.com/search/word/0_242_0.html?v=NTYxMjky网站主要以设计类素材为主,办公类素材也很多,简历模板大部个偏简约风,各种版式都有,而且经常会更新。最重要的是全部都能免费下载。2、个人简历网https://www.gerenjianli.com/moban/这是一个专门提供简历模板的网站,里面有超多模板个类,找起来非常方便,风格也很多样,无须注册就能免费下载,_hoso模板官网

通过 TikTok 联盟提高销售额的 6 个步骤_tiktok联盟-程序员宅基地

文章浏览阅读142次。你听说过吗?该计划可让您以推广您的产品并在成功销售时支付佣金。它提供了新的营销渠道,使您的产品呈现在更广泛的受众面前并提高品牌知名度。此外,TikTok Shop联盟可以是一种经济高效的产品或服务营销方式。您只需在有人购买时付费,因此不存在在无效广告上浪费金钱的风险。这些诱人的好处是否足以让您想要开始您的TikTok Shop联盟活动?如果是这样,本指南适合您。_tiktok联盟