详解STM32CubeIDE 中 HAL库的串口中断接收函数 HAL_UART_Receive_IT-程序员宅基地

技术标签: STM32  CubeIDE  

MX串口配置方法见:CubeIDE 利用自带HAL库 串口收发

 

一、代码自动生成以后的项目及代码结构:

main.c中,调用了串口初始化

 

串口初始化函数赋值了串口的参数

 

相当于底层的初始化,配置引脚、并开启中断。

至此串口1配置完毕

二、库文件stm32f1xx_hal_uart.c内的秘密

2.1 初始化

1.usart.c中,MX_USART1_UART_Init 调用了库的HAL_UART_Init,将结构体传递进该函数中

2.HAL_UART_Init干了些什么事?

 if (huart->gState == HAL_UART_STATE_RESET)
  {
    huart->Lock = HAL_UNLOCKED;
    HAL_UART_MspInit(huart);
  }
huart->gState = HAL_UART_STATE_BUSY; 
  __HAL_UART_DISABLE(huart);  /* Disable the peripheral */
  UART_SetConfig(huart);/* Set the UART Communication parameters */

  /* In asynchronous mode, the following bits must be kept cleared:
     - LINEN and CLKEN bits in the USART_CR2 register,
     - SCEN, HDSEL and IREN  bits in the USART_CR3 register.*/
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
  __HAL_UART_ENABLE(huart);  /* Enable the peripheral */
  huart->ErrorCode = HAL_UART_ERROR_NONE;
  huart->gState = HAL_UART_STATE_READY;
  huart->RxState = HAL_UART_STATE_READY;

调用MspInit-->修改状态忙-->配置寄存器-->清楚标志位 

2.2 先理解HAL_UART_Receive函数

uint32_t tickstart = 0U;

if (huart->RxState == HAL_UART_STATE_READY)  /* Check that a Rx process is not already ongoing */
  {
    __HAL_LOCK(huart);    /* Process Locked */

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->RxState = HAL_UART_STATE_BUSY_RX;

    tickstart = HAL_GetTick();

    huart->RxXferSize = Size;
    huart->RxXferCount = Size;


    while (huart->RxXferCount > 0U)
    {
      huart->RxXferCount--;
      if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
            return HAL_TIMEOUT;
      *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
      }
}

    huart->RxState = HAL_UART_STATE_READY;
    __HAL_UNLOCK(huart);

判断是否忙-->锁住-->标记接收忙-->获取tick计数

-->赋值RxXferCount有多少数据要接收-->每次从DR内获取一个Byte存在pData指向的空间

2.3 HAL_UART_Receive_IT只是配置了一下参数,并没有做任何处理

/* Check that a Rx process is not already ongoing */
  if (huart->RxState == HAL_UART_STATE_READY)
  {
    __HAL_LOCK(huart);    /* Process Locked */
    huart->pRxBuffPtr = pData;
    huart->RxXferSize = Size;
    huart->RxXferCount = Size;
    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->RxState = HAL_UART_STATE_BUSY_RX;
    __HAL_UNLOCK(huart);    /* Process Unlocked */

    /*Error Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
    __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);

    /* Enable the UART Data Register not empty Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);

    return HAL_OK;
    }

存储在pData指向位置、空间大小RxXferSize 、接收计数RxXferCount ; 接收状态忙;使能接收中断

那么当有数据来的时候,就需要依靠中断函数来处理了。

2.4再看看中断函数在做什么

stm32f1xx_it.c内有定义USART1_IRQHandler,只调用了HAL_UART_IRQHandler函数,下面是

HAL_UART_IRQHandler具体内容

errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
  if (errorflags == RESET)
  {
    if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
    {
      UART_Receive_IT(huart);
      return;
    }
  }

  /* If some errors occur */
  if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
  {
//略过错误处理
    /* Call UART Error Call back function if need be --------------------------*/
    if (huart->ErrorCode != HAL_UART_ERROR_NONE)
    {
      /* UART in mode Receiver -----------------------------------------------*/
      if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
        UART_Receive_IT(huart);
//略过错误处理
        huart->ErrorCode = HAL_UART_ERROR_NONE;
      }
    }
    return;
  } /* End if some error occurs */

  /* UART in mode Transmitter ------------------------------------------------*/
  if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
  {    UART_Transmit_IT(huart);    return;  }

  /* UART in mode Transmitter end --------------------------------------------*/
  if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
  {    UART_EndTransmit_IT(huart);    return;  }

无非是三件事,判断是由什么中断响应的,有错误则处理,响应要调用的接收或者发送。

注意区别 UART_Receive_IT 和 HAL_UART_Receive_IT。

HAL_UART_Receive_IT是用户调用的需要接收多少数据存在何处。

UART_Receive_IT是中断调用的有数据收到该如何处理。

2.5 UART_Receive_IT 真正在接收数据的函数,但在最后会关闭中断

  uint16_t *tmp;

  /* Check that a Rx process is ongoing */
  if (huart->RxState == HAL_UART_STATE_BUSY_RX)
  {
    *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
    if (--huart->RxXferCount == 0U)
    {
      __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
      __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
      __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);

      huart->RxState = HAL_UART_STATE_READY;

#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
      /*Call registered Rx complete callback*/
      huart->RxCpltCallback(huart);
#else
      /*Call legacy weak Rx complete callback*/
      HAL_UART_RxCpltCallback(huart);
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */

      return HAL_OK;
    }
    return HAL_OK;
  }

如果是接收状态忙,则从DR中读取1Byte数据。

如果接收计数归零,则使中断失效,并调用回调函数(用户定义则调用用户的,否则调用系统的)

至此,所有用到的代码分析完毕

三、总结

1、HAL_UART_Receive_IT和HAL_UART_Receive的区别就是:中断接收是有数据到了才去读;直接接收是直接读取,如果超时就返回

2、HAL_UART_Receive_IT配置后,有数据来,计数会在调用中断函数之后自动减1。只有到计数为0时,才会关闭中断调用回调函数。至此有数据来不再调用中断函数,因为中断已经失效。

3、HAL_UART_Receive_IT在计数未至0之前,应该可以读取之前接收到的数据,但这样做应该比较危险。

4、在开源电子的例程中,使用 HAL_UART_Receive_IT(&huart1,(uint8_t *)aRxBuffer, 1);  即Size设置为1,只接收1Byte数据,在每次中断结束后重新配置来使能中断。

四、还有必要再看一眼uart的结构体定义

/**
  * @brief  UART handle Structure definition
  */
typedef struct __UART_HandleTypeDef
{
  USART_TypeDef                 *Instance;        /*!< UART registers base address        */

  UART_InitTypeDef              Init;             /*!< UART communication parameters      */

  uint8_t                       *pTxBuffPtr;      /*!< Pointer to UART Tx transfer Buffer */

  uint16_t                      TxXferSize;       /*!< UART Tx Transfer size              */

  __IO uint16_t                 TxXferCount;      /*!< UART Tx Transfer Counter           */

  uint8_t                       *pRxBuffPtr;      /*!< Pointer to UART Rx transfer Buffer */

  uint16_t                      RxXferSize;       /*!< UART Rx Transfer size              */

  __IO uint16_t                 RxXferCount;      /*!< UART Rx Transfer Counter           */

  DMA_HandleTypeDef             *hdmatx;          /*!< UART Tx DMA Handle parameters      */

  DMA_HandleTypeDef             *hdmarx;          /*!< UART Rx DMA Handle parameters      */

  HAL_LockTypeDef               Lock;             /*!< Locking object                     */

  __IO HAL_UART_StateTypeDef    gState;           /*!< UART state information related to global Handle management
                                                       and also related to Tx operations.
                                                       This parameter can be a value of @ref HAL_UART_StateTypeDef */

  __IO HAL_UART_StateTypeDef    RxState;          /*!< UART state information related to Rx operations.
                                                       This parameter can be a value of @ref HAL_UART_StateTypeDef */

  __IO uint32_t                 ErrorCode;        /*!< UART Error code                    */

#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
  void (* TxHalfCpltCallback)(struct __UART_HandleTypeDef *huart);        /*!< UART Tx Half Complete Callback        */
  void (* TxCpltCallback)(struct __UART_HandleTypeDef *huart);            /*!< UART Tx Complete Callback             */
  void (* RxHalfCpltCallback)(struct __UART_HandleTypeDef *huart);        /*!< UART Rx Half Complete Callback        */
  void (* RxCpltCallback)(struct __UART_HandleTypeDef *huart);            /*!< UART Rx Complete Callback             */
  void (* ErrorCallback)(struct __UART_HandleTypeDef *huart);             /*!< UART Error Callback                   */
  void (* AbortCpltCallback)(struct __UART_HandleTypeDef *huart);         /*!< UART Abort Complete Callback          */
  void (* AbortTransmitCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Transmit Complete Callback */
  void (* AbortReceiveCpltCallback)(struct __UART_HandleTypeDef *huart);  /*!< UART Abort Receive Complete Callback  */
  void (* WakeupCallback)(struct __UART_HandleTypeDef *huart);            /*!< UART Wakeup Callback                  */

  void (* MspInitCallback)(struct __UART_HandleTypeDef *huart);           /*!< UART Msp Init callback                */
  void (* MspDeInitCallback)(struct __UART_HandleTypeDef *huart);         /*!< UART Msp DeInit callback              */
#endif  /* USE_HAL_UART_REGISTER_CALLBACKS */

} UART_HandleTypeDef;

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u010779035/article/details/103765707

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法