Building The LinkedIn Knowledge Graph-程序员宅基地

技术标签: java  人工智能  php  

https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph

  • knowledgegraph1

Authors: Qi HeBee-Chung ChenDeepak Agarwal

shorter version of this post first appeared on Pulse, our main publishing platform at LinkedIn. In this version, we’ll dive deeper into the technical details behind the construction of our knowledge graph.

 

At LinkedIn, we use machine learning technology widely to optimize our products: for instance, ranking search results, advertisements, and updates in the news feed, or recommending people, jobs, articles, and learning opportunities to members. An important component of this technology stack is a knowledge graph that provides input signals to machine learning models and data insight pipelines to power LinkedIn products. This post gives an overview of how we build this knowledge graph.

LinkedIn’s knowledge graph

LinkedIn’s knowledge graph is a large knowledge base built upon “entities” on LinkedIn, such as members, jobs, titles, skills, companies, geographical locations, schools, etc. These entities and the relationships among them form the ontology of the professional world and are used by LinkedIn to enhance its recommender systems, search, monetization and consumer products, and business and consumer analytics.

Creating a large knowledge base is a big challenge. Websites like Wikipedia and Freebase primarily rely on direct contributions from human volunteers. Other related work, such as Google's Knowledge Vault and Microsoft's Satori, focuses on automatically extracting facts from the internet for constructing knowledge bases. Different from these efforts, we derive LinkedIn’s knowledge graph primarily from a large amount of user-generated content from members, recruiters, advertisers, and company administrators, and supplement it with data extracted from the internet, which is noisy and can have duplicates. The knowledge graph needs to scale as new members register, new jobs are posted, new companies, skills, and titles appear in member profiles and job descriptions, etc.

To solve the challenges we face when building the LinkedIn knowledge graph, we apply machine learning techniques, which is essentially a process of data standardization on user-generated content and external data sources, in which machine learning is applied to entity taxonomy construction, entity relationship inference, data representation for downstream data consumers, insight extraction from graph, and interactive data acquisition from users to validate our inference and collect training data. LinkedIn’s knowledge graph is a dynamic graph. New entities are added to the graph and new relationships are formed continuously. Existing relationships can also change. For example, the mapping from a member to her current title changes when she has a new job. We need to update the LinkedIn knowledge graph in real time upon member profile changes and when new entities emerge.

Construction of entity taxonomy

For LinkedIn, an entity taxonomy consists of the identity of an entity (e.g., its identifier, definition, canonical name, and synonyms in different languages, etc.) and the attributes of an entity. Entities are created in two ways:

  • Organic entities are generated by users, where informational attributes are produced and maintained by users. Examples include members, premium jobs, companies created by their administrators, etc.

  • Auto-created entities are generated by LinkedIn. Since the member coverage of an entity (number of members who have this entity) is key to the value that data can drive across both monetization and consumer products, we focus on creating new entities for which we can map members to. By mining member profiles for entity candidates and utilizing external data sources and human validations to enrich candidate attributes, we created tens of thousands of skills, titles, geographical locations, companies, certificates, etc., to which we can map members.

To date, there are 450M members, 190M historical job listings, 9M companies, 200+ countries (where 60+ have granular geolocational data), 35K skills in 19 languages, 28K schools, 1.5K fields of study, 600+ degrees, 24K titles in 19 languages, and 500+ certificates, among other entities.

Entities represent the nodes in the LinkedIn knowledge graph. We need to clean up user-generated organic entities, which can have meaningless names, invalid or incomplete attributes, stale content, or no member mapped to them. We inductively generate rules to identify inaccurate or problematic organic entities. For auto-created entities, the generation process includes:

  • Generate candidates. Each entity has a canonical name which is an English phrase in most cases. Entity candidates are common phrases in member profiles and job descriptions based on intuitive rules.

  • Disambiguate entities. A phrase can have different meanings in different contexts. By representing each phrase as a vector of top co-occurred phrases in member profiles and job descriptions, we developed a soft clustering algorithm to group phrases. An ambiguous phrase can appear in multiple clusters and represent different entities.

  • De-duplicate entities. Multiple phrases can represent the same entity if they are synonyms of each other. By representing each phrase as a word vector (e.g., produced by a word2vec model trained on member profiles and job descriptions), we run a clustering algorithm combined with manual validations from taxonomists to de-duplicate entities. Similar techniques are also used to cluster entities if the taxonomy has a hierarchical structure.

  • Translate entities into other languages. Given the power-law nature of the member coverage of entities, linguistic experts at LinkedIn manually translate the top entities with high member coverages into international languages to achieve high precision, and PSCFG-based machine translation models are applied to automatically translate long-tail entities to achieve high recall.

The below figure visualizes an example title entity “Software Engineer” in the title taxonomy. The title taxonomy has a hierarchical structure: similar titles such as “Programmer” and “Web Developer” are clustered into the same supertitle of “Software Developer,” and similar supertitles are clustered into the same function of “Engineering.”

  • knowledgegraph2

Entity attributes are categorized into two parts: relationships to other entities in a taxonomy, and characteristic features not in any taxonomy. For example, a company entity has attributes that refer to other entities, such as members, skills, companies, and industries with identifiers in the corresponding taxonomies; it also has attributes such as a logo, revenue, and URL that do not refer to any other entity in any taxonomy. The former represents edges in the LinkedIn knowledge graph, which will be discussed in the next section. The latter involves feature extraction from text, data ingestion from search engine, data integration from external sources, and crowdsourcing-based methods, etc.

All entity attributes have confidence scores, either computed by a machine learning model, or assigned to be 1.0 if attributes are human-verified. The confidence scores predicted by machines are calibrated using a separate validation set, such that downstream applications can balance the tradeoff between accuracy and coverage easily by interpreting it as probability.

Inferring entity relationship

There are many valuable relationships between entities in the LinkedIn ecosystem. To name a few, the mappings from members to other entities (e.g., the skills that a member has) are crucial to ad targeting, people search, recruiter search, feed, and business and consumer analytics; the mappings from jobs to other entities (e.g., the skills that a job requires) are driving job recommendations and job search; and similarity between entities are important features in relevance models.

Some entity relationships are generated by members. For example, a member directly selects her company and a company administrator assigns an industry to the company, both from LinkedIn typeahead services. We call these member-generated entity relationships “explicit.” Some entity relationships are predicted by LinkedIn. For example, when a member enters “linkedin_” as her company name in the profile, we predict her true company identifier is associated with “LinkedIn.” We call these LinkedIn-predicted entity relationships “inferred.” Not all explicit relationships are trustworthy, however; one notable problem is “member’s mistake,” where members map themselves to an incorrect entity. In the below figure, a small design firm called “uber” with 1-10 employees has 96 members mapped to it, most of whom mistakenly selected the design firm “uber” from the typeahead, instead of the online transportation network company “Uber” that they actually work at.

  • knowledgegraph3

We developed a near real-time content processing framework to infer entity relationships. In total, trillions of member-generated and LinkedIn-inferred relationships co-exist in the LinkedIn knowledge graph. The below figure shows one example of inferring skills for members. Igor, VP of Data at LinkedIn, has a set of explicit skills he entered himself, such as “Distributed Systems,” “Hadoop,” etc. A machine learning model based on text features and other entity metadata features infers other skills, such as “Product Management,” “Management,” “Consulting,” etc. for him.

  • knowledgegraph4

We train a binary classifier for each kind of entity relationship: a pair of entities belong to a given entity relationship in a binary manner (e.g., belong or not) on the basis of a set of features. Collecting high-quality training data for this supervised task is challenging. We use member-selected relationships from our typeahead service as the positive training examples. By randomly adding noise as the negative training examples, we train per-entity prediction models. This method works well for popular entities. To train a joint model covering entities in the long-tail of the distribution and to alleviate member selection errors, we leverage crowdsourcing to generate additional labeled data.

Inferred relationships are also recommended to members proactively to collect their feedback (“accept,” “decline,” or “ignore”). Accepted ones automatically become explicit relationships. All kinds of member feedback are collected as new training data, which can reinforce the next iteration of classifiers.

Data representation

Entity taxonomies and entity relationships collectively make up the standardized version of LinkedIn data in a graph structure. Equipped with this, all downstream products can speak the same language at the data level. Application teams obtain the raw knowledge graph through a set of APIs that output the entity identifiers by taking either text or other entity identifiers as the input. Various classifier results are represented in various structured formats, and served through Java libraries, REST APIs, Kafka (a high-throughput distributed messaging system) stream events, and HDFS files consistently with data version control. These data delivery mechanisms on the raw knowledge graph are useful for displaying, indexing, and filtering entities in products.

We also embed the knowledge graph into a latent space (background of this research can be found here). As a result, the latent vector of an entity encompasses its semantics in multiple entity taxonomies and multiple entity relationships (classifiers) compactly. After embedding all skills and titles into the same high-dimensional latent space using deep learning techniques, the below figure visualizes skills such as “ActionScript,” “HTML Scripting,” and “PHP” in close proximity to the title “Web Developer” after dimensionality reduction. As can be seen, the semantic proximities between entities in the original knowledge graph are still retained after the embedding.

  • knowledgegraph5

In this example, the model has a single objective, which is to predict a member’s title latent vector based on simple arithmetic operations on the member's skill latent vectors. It is particularly useful to infer the entity relationship from member to title. By optimizing the model for multiple objectives simultaneously, we can then learn latent representations more generically. Representing heterogeneous entities as vectors in the same latent space provides a concise way for using the knowledge graph as a data source from which we can extract various kinds of features to feed relevance models. This is particularly useful to relevance models, as it significantly reduce the feature engineering work on the knowledge graph.

Insights extraction from the graph

Additional knowledge can be inferred on top of the standardized knowledge graph, generating insights for business and consumer analytics. For example, by conducting OLAP to selectively aggregate graph data from different points of view, we can generate real-time insights such as the number of members who have a given skill in a given location (supply), the number of job hires requiring a given skill in that same location (demand), and finally the sophisticated skill gap after considering both supply and demand ends. We can also constrain the data analytics into a certain time range for fetching retrospective insights. The below figure lists the top ten most in-demand soft skills that can help job seekers stand out from other candidates based on data analytics on member profile updates between June 2014 and June 2015.

  • knowledgegraph6

Insights help leaders and sales make business decisions, and increase member engagement with LinkedIn. For example, the above insights encourage members to add those soft skills to their profiles or learn them in LinkedIn online courses.

The discovery of data insights from a standardized knowledge graph is an experience-driven data mining process. It can disclose previously undiscerned relationships between entities, which is thus another way of completing the LinkedIn knowledge graph. As shown in the below figure, the above insight example defines a new type of entity relationship from member to skills (“skills you may want to learn”).

  • knowledgegraph7

Conclusion

Building the LinkedIn knowledge graph includes node (entity) taxonomy construction, edge (entity relationship) inference, and graph representation. Aggregations on top of the graph provide additional insights, some of which can contribute back to further complete the graph. This post is just the start of sharing our experiences, and there is plenty more that we want to discuss in the future, such as applications and insights of the knowledge graph, advanced machine learning techniques in entity classification and representation, and the backend infrastructure.

Acknowledgements

Thanks to Hong Tam for providing the “uber” study case in inferred entity relationship, Uri Merhav for providing the “Web Developer” study case in data representation, Link Gan for providing the “Top 10 Most In-Demand Soft Skills” study case in insights extraction, and the entire LinkedIn Data Standardization team for building the foundations of this incredible work.

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_34015336/article/details/86015543

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法