使用cutlass实现多种精度的GEMM,支持cuda core与tensor core_cutlass gemm int8-程序员宅基地

技术标签: CUDA  cuda  tensor core  cutlass  nvidia  

欢迎关注微信公众号InfiniReach,这里有更多AI大模型的前沿算法与工程优化方法分享
请添加图片描述下面实现了两份支持tensorcore 与cudacore 的代码,具体cutlass的安装,api的解读,gemm的原理部分,可以看https://mp.weixin.qq.com/s/FXuFljYMc-8Zb8pHf–GPA

cutlass gemm + cuda core

使用cutlass实现一个ampere架构下的GEMM,通过模版支持多种精度,多种layout等配置,支持cuda core

/**
 * @file m2.cu
 * @author your name ([email protected])
 * @brief 
 * @version 0.1
 * @date 2024-03-27
 * 
 * @copyright Copyright (c) 2024
 * 多精度GEMM
 */
#include <cstdio>
#include <omp.h>
#include <Eigen/Core>
#include <cuda_runtime_api.h>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"

/// Define a CUTLASS GEMM template and launch a GEMM kernel.
template<
typename ElementInputA=float,
typename ElementInputB=float,
typename ElementOutput=float,
typename ElementAccumulator=float,
typename Major=cutlass::layout::ColumnMajor,
typename OperatorClass=cutlass::arch::OpClassSimt,
typename ArchTag=cutlass::arch::Sm80>
cudaError_t CutlassGemmCUDA(
  int M,
  int N,
  int K,
  float alpha,
  ElementInputA const *A,
  int lda,
  ElementInputB const *B,
  int ldb,
  float beta,
  ElementOutput *C,
  int ldc) {
    
  using CutlassGemm = cutlass::gemm::device::Gemm<ElementInputA, Major, 
                                                  ElementInputB, Major, 
                                                  ElementOutput, Major,
                                                  ElementAccumulator, 
                                                  OperatorClass, 
                                                  ArchTag>;                                                

  CutlassGemm gemm_operator;

  typename CutlassGemm::Arguments args({
    M, N, K},  // Gemm Problem dimensions
                              {
    A, lda},    // Tensor-ref for source matrix A
                              {
    B, ldb},    // Tensor-ref for source matrix B
                              {
    C, ldc},    // Tensor-ref for source matrix C
                              {
    C, ldc},    // Tensor-ref for destination matrix D (may be different memory than source C matrix)
                              {
    alpha, beta}); // Scalars used in the Epilogue

  //
  // Launch the CUTLASS GEMM kernel.
  //
  
  cutlass::Status status = gemm_operator(args);

  if (status != cutlass::Status::kSuccess) {
    
    return cudaErrorUnknown;
  }
  return cudaSuccess;
}

template<typename T1=float, typename T2=float>
void AllocateDevMatrix(T1 **matrix, const int rows, const int columns, const T2 *host_ptr=nullptr) {
    
  cudaError_t result;

  size_t sizeof_matrix = sizeof(T1) * rows * columns;
  // Allocate device memory.
  result = cudaMalloc(reinterpret_cast<void **>(matrix), sizeof_matrix);
  if (result != cudaSuccess) {
    
    std::cerr << "Failed to allocate matrix: "
      << cudaGetErrorString(result) << std::endl;
  }

  cudaMemset(*matrix, 0, sizeof_matrix);
  if(host_ptr != nullptr)
    cudaMemcpy(*matrix, host_ptr, sizeof_matrix, cudaMemcpyHostToDevice);
}

template<typename T=float, int Major=Eigen::RowMajor, bool init = true>
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Major>
 InitData(const int rows, const int columns){
    
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Major> x;
  x.resize(rows, columns);
  if constexpr (init) {
    
    x.setRandom();
  }
  return x;
}

template<typename T>
struct wrapper_{
    using type = T;};

template<>
struct wrapper_<float>{
    using type = float;};

template<>
struct wrapper_<double>{
    using type = double;};

template<>
struct wrapper_<cutlass::bfloat16_t>{
    using type = Eigen::bfloat16;};

template<>
struct wrapper_<cutlass::half_t>{
    using type = Eigen::half;};

template<typename T>
using wrapper = typename wrapper_<T>::type;


int main(int argc, char *argv[]) {
    
  const int M = 128;
  const int K = 512;
  const int N = 1024;
  omp_set_num_threads(omp_get_num_procs());

  using OperatorClass = cutlass::arch::OpClassSimt;
  using ArchTag = cutlass::arch::Sm80;
  using ElementInputA = float;
  using ElementInputB = float;
  using ElementOutput = float;
  using ElementAccumulator = float;
  using Major = cutlass::layout::RowMajor;

  ElementInputA *DevPtrA;
  ElementInputB *DevPtrB;
  ElementOutput *DevPtrC;

  auto HostA = InitData<wrapper<ElementInputA>, Eigen::RowMajor, true>(M, K);
  auto HostB = InitData<wrapper<ElementInputB>, Eigen::RowMajor, true>(K, N);
  auto HostC = InitData<wrapper<ElementOutput>, Eigen::RowMajor, true>(M, N);
  auto HostD = InitData<wrapper<ElementOutput>, Eigen::RowMajor, false>(M, N);
  auto HostCutlassD = InitData<wrapper<ElementOutput>, Eigen::RowMajor, false>(M, N);

  HostD = HostA * HostB + HostC;
  
  AllocateDevMatrix<ElementInputA, wrapper<ElementInputA>>(&DevPtrA, M, K, HostA.data());
  AllocateDevMatrix<ElementInputB, wrapper<ElementInputB>>(&DevPtrB, K, N, HostB.data());
  AllocateDevMatrix<ElementOutput, wrapper<ElementOutput>>(&DevPtrC, M, N, HostC.data());

  CutlassGemmCUDA<ElementInputA, 
                 ElementInputB, 
                 ElementOutput, 
                 ElementAccumulator,
                 Major, 
                 OperatorClass, 
                 ArchTag>
                 (M, N, K, 
                  1., 
                  DevPtrA, K, 
                  DevPtrB, N,
                  1.,
                  DevPtrC, N
                );
  
  cudaDeviceSynchronize();
  cudaMemcpy(HostCutlassD.data(), DevPtrC, HostCutlassD.size() * sizeof(ElementOutput),
             cudaMemcpyDeviceToHost);
  printf("Max error: %f\n", (float)((HostCutlassD - HostD).cwiseAbs().maxCoeff()));

  cudaFree(DevPtrA);
  cudaFree(DevPtrB);
  cudaFree(DevPtrC);
  return 0;
}

cmakelists.txt如下:

cmake_minimum_required(VERSION 3.22)
project(cutlassStudy CXX CUDA)

set(CMAKE_CUDA_STANDARD 17)
find_package(CUDA)
include(FindCUDA/select_compute_arch)
CUDA_DETECT_INSTALLED_GPUS(INSTALLED_GPU_CCS_1)
string(STRIP "${INSTALLED_GPU_CCS_1}" INSTALLED_GPU_CCS_2)
string(REPLACE " " ";" INSTALLED_GPU_CCS_3 "${INSTALLED_GPU_CCS_2}")
string(REPLACE "." "" CUDA_ARCH_LIST "${INSTALLED_GPU_CCS_3}")
message("-- nvcc generates code for arch ${CUDA_ARCH_LIST}")
SET(CMAKE_CUDA_ARCHITECTURES ${CUDA_ARCH_LIST})

find_package(Eigen3 REQUIRED)
find_package(OpenMP REQUIRED)
add_compile_options(-lineinfo)

add_executable(test test.cu)

target_link_libraries(test OpenMP::OpenMP_CXX)

cutlass gemm + tensor core

使用cutlass实现一个ampere架构下的GEMM,通过模版支持多种精度,多种layout等配置,支持tensor core

/**
 * @file test.cu
 * @author InfiniReach
 * @brief 
 * @version 0.1
 * @date 2024-03-27
 * 
 * @copyright Copyright (c) 2024
 */
#include <cstdio>
#include <omp.h>
#include <Eigen/Core>
#include <cuda_runtime_api.h>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/tensor_view_io.h"
#include "helper.h"

/// Define a CUTLASS GEMM template and launch a GEMM kernel.
template<
typename ElementInputA=float,
typename ElementInputB=float,
typename ElementOutput=float,
typename ElementAccumulator=float,
typename MajorA=cutlass::layout::RowMajor,
typename MajorB=cutlass::layout::ColumnMajor,
typename MajorC=cutlass::layout::RowMajor,
typename OperatorClass=cutlass::arch::OpClassSimt,
typename ArchTag=cutlass::arch::Sm80,
typename ShapeMMAThreadBlock=cutlass::gemm::GemmShape<128, 128, 16>,
typename ShapeMMAWarp=cutlass::gemm::GemmShape<64, 64, 16>,
typename ShapeMMAOp=cutlass::gemm::GemmShape<16, 8, 8>,
int NumStages=2>
cudaError_t CutlassGemmTensorOp(
  int M,
  int N,
  int K,
  float alpha,
  ElementInputA const *A,
  int lda,
  ElementInputB const *B,
  int ldb,
  float beta,
  ElementOutput *C,
  int ldc) {
    
  using ElementComputeEpilogue = ElementAccumulator;
  // This code section describes how threadblocks are scheduled on GPU
  using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;  // <- ??

  // This code section describes the epilogue part of the kernel
  using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
    ElementOutput,                                     // <- data type of output matrix
    128 / cutlass::sizeof_bits<ElementOutput>::value,  // <- the number of elements per vectorized
                                                       // memory access. For a byte, it's 16
                                                       // elements. This becomes the vector width of
                                                       // math instructions in the epilogue too
    ElementAccumulator,                                // <- data type of accumulator
    ElementComputeEpilogue>;  // <- data type for alpha/beta in linear combination function

  using Gemm = cutlass::gemm::device::Gemm<ElementInputA, MajorA, 
                                            ElementInputB, MajorB, 
                                            ElementOutput, MajorC,
                                            ElementAccumulator, 
                                            OperatorClass, 
                                            ArchTag,
                                            ShapeMMAThreadBlock,
                                            ShapeMMAWarp,
                                            ShapeMMAOp,
                                            EpilogueOp,
                                            SwizzleThreadBlock,
                                            NumStages>;                                                

  cutlass::gemm::GemmCoord problem_size{
    M, N, K};
  // Split K dimension into 1 partitions
  int split_k_slices = 1;
  // Create a tuple of gemm kernel arguments. This is later passed as arguments to launch
  // instantiated CUTLASS kernel
  typename Gemm::Arguments arguments{
    problem_size,  // <- problem size of matrix multiplication
                                     cutlass::TensorRef<ElementInputA const, MajorA>(A, lda),  // <- reference to matrix A on device
                                     cutlass::TensorRef<ElementInputB const, MajorB>(B, ldb),  // <- reference to matrix B on device
                                     cutlass::TensorRef<ElementOutput const, MajorC>(C, ldc),  // <- reference to matrix C on device
                                     cutlass::TensorRef<ElementOutput, MajorC>(C, ldc),  // <- reference to matrix D on device
                                     {
    alpha, beta},          // <- tuple of alpha and beta
                                     split_k_slices};        // <- k-dimension split factor

  // Using the arguments, query for extra workspace required for matrix multiplication computation
  size_t workspace_size = Gemm::get_workspace_size(arguments);

  // Allocate workspace memory
  cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

  // Instantiate CUTLASS kernel depending on templates
  Gemm gemm_op;

  // Check the problem size is supported or not 
  cutlass::Status status = gemm_op.can_implement(arguments);
  CUTLASS_CHECK(status);

  // Initialize CUTLASS kernel with arguments and workspace pointer
  status = gemm_op.initialize(arguments, workspace.get());
  CUTLASS_CHECK(status);

  status = gemm_op();
  CUTLASS_CHECK(status);
}

template<typename T1=float, typename T2=float>
void AllocateDevMatrix(T1 **matrix, const int rows, const int columns, const T2 *host_ptr=nullptr) {
    
  cudaError_t result;

  size_t sizeof_matrix = sizeof(T1) * rows * columns;
  // Allocate device memory.
  result = cudaMalloc(reinterpret_cast<void **>(matrix), sizeof_matrix);
  if (result != cudaSuccess) {
    
    std::cerr << "Failed to allocate matrix: "
      << cudaGetErrorString(result) << std::endl;
  }

  cudaMemset(*matrix, 0, sizeof_matrix);
  if(host_ptr != nullptr)
    cudaMemcpy(*matrix, host_ptr, sizeof_matrix, cudaMemcpyHostToDevice);
}

template<typename T=float, int Major=Eigen::RowMajor, bool init = true>
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Major>
 InitData(const int rows, const int columns){
    
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Major> x;
  x.resize(rows, columns);
  if constexpr (init) {
    
    x.setRandom();
  }
  return x;
}

template<typename T>
struct wrapper_{
    using type = T;};

template<>
struct wrapper_<float>{
    using type = float;};

template<>
struct wrapper_<double>{
    using type = double;};

template<>
struct wrapper_<cutlass::bfloat16_t>{
    using type = Eigen::bfloat16;};

template<>
struct wrapper_<cutlass::half_t>{
    using type = Eigen::half;};

template<typename T>
using wrapper = typename wrapper_<T>::type;

template<typename T>
struct major_{
    static constexpr int type = -1;};

template<>
struct major_<cutlass::layout::RowMajor>{
    static constexpr int type = static_cast<int>(Eigen::RowMajor);};

template<>
struct major_<cutlass::layout::ColumnMajor>{
    static constexpr int type = static_cast<int>(Eigen::ColMajor);};

template<typename T>
static constexpr int major = major_<T>::type;

int main(int argc, char *argv[]) {
    
  const int M = 128;
  const int K = 512;
  const int N = 1024;
  omp_set_num_threads(omp_get_num_procs());

  using OperatorClass = cutlass::arch::OpClassTensorOp;
  using ArchTag = cutlass::arch::Sm80;
  using ElementInputA = float;
  using ElementInputB = float;
  using ElementOutput = float;
  using ElementAccumulator = float;
  using MajorA = cutlass::layout::ColumnMajor;
  using MajorB = cutlass::layout::RowMajor;
  using MajorC = cutlass::layout::ColumnMajor;
  using ShapeMMAThreadBlock=cutlass::gemm::GemmShape<128, 128, 16>;
  using ShapeMMAWarp=cutlass::gemm::GemmShape<64, 64, 16>;
  using ShapeMMAOp=cutlass::gemm::GemmShape<16, 8, 8>;
  constexpr int NumStages=4;

  auto HostA = InitData<wrapper<ElementInputA>, major<MajorA>, true>(M, K);
  auto HostB = InitData<wrapper<ElementInputB>, major<MajorB>, true>(K, N);
  auto HostC = InitData<wrapper<ElementOutput>, major<MajorC>, true>(M, N);
  auto HostD = InitData<wrapper<ElementOutput>, major<MajorC>, false>(M, N);
  auto HostCutlassD = InitData<wrapper<ElementOutput>, major<MajorC>, false>(M, N);

  HostD = HostA * HostB + HostC;
  
  ElementInputA *DevPtrA;
  ElementInputB *DevPtrB;
  ElementOutput *DevPtrC;
  int lda = HostA.outerStride();
  int ldb = HostB.outerStride();
  int ldc = HostC.outerStride();
  
  AllocateDevMatrix<ElementInputA, wrapper<ElementInputA>>(&DevPtrA, M, K, HostA.data());
  AllocateDevMatrix<ElementInputB, wrapper<ElementInputB>>(&DevPtrB, K, N, HostB.data());
  AllocateDevMatrix<ElementOutput, wrapper<ElementOutput>>(&DevPtrC, M, N, HostC.data());

  CutlassGemmTensorOp<ElementInputA, 
                      ElementInputB, 
                      ElementOutput, 
                      ElementAccumulator,
                      MajorA, 
                      MajorB, 
                      MajorC, 
                      OperatorClass, 
                      ArchTag,
                      ShapeMMAThreadBlock,
                      ShapeMMAWarp,
                      ShapeMMAOp,
                      NumStages>
                      (M, N, K, 
                        1., 
                        DevPtrA, lda, 
                        DevPtrB, ldb,
                        1.,
                        DevPtrC, ldc
                      );
  
  cudaDeviceSynchronize();
  cudaMemcpy(HostCutlassD.data(), DevPtrC, HostCutlassD.size() * sizeof(ElementOutput),
             cudaMemcpyDeviceToHost);
  printf("Max error: %f\n", (float)((HostCutlassD - HostD).cwiseAbs().maxCoeff()));

  cudaFree(DevPtrA);
  cudaFree(DevPtrB);
  cudaFree(DevPtrC);

  return 0;
}

cutlass 安装,以及详细原理

请看https://mp.weixin.qq.com/s/FXuFljYMc-8Zb8pHf–GPA,欢迎关注公众号。
在这里插入图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_42764932/article/details/137087862

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签