2G-4G网络结构演进_2g网络结构-程序员宅基地

技术标签: 网络  移动通信  


无线接入网:负责接收用户终端的无线信号,由此接入到通信网络;

核心网:对用户数据的管理及具体业务处理,并作为承载网络提供到外部网络的接口。

一、GSM网络结构(2G)

通常,我们所说的2G网络指的就是基于GSM的网络,它的结构主要由四部分构成:

移动台MS(Mobile Station),它的功能是负责无线信号的收发及处理;

基站子系统BSS(Base Station Subsystem),它属于接入网部分,由基站收发信台BTS(Base Transceiver Station)和基站控制器BSC(Base Station Controller)两部分构成。BTS通过Um空中接口收到MS发送的无线信号,然后将其传送给BSC,在BSC负责无线资源的管理及配置(诸如功率控制,信道分配等),然后通过A接口传送至核心网部分;

网络子系统NSS(Network and Switching Subsystem),它是核心网的核心部分,主要由MSC、VLR、HLR、AUC、EIR等功能实体组成。其中,移动业务交换中心MSC(Mobile service Switching Center)是NSS核心,负责处理用户具体业务;访问位置寄存器VLR(Visit Location Register)和归属位置寄存器HLR(Home Location Register)主要负责移动性管理及用户数据库管理的功能;鉴权中心AUC(Authentication Center)和设备识别寄存器EIR(Equipment Identity Register)主要负责安全性方面的功能;网关型GMSC负责提供接入外部网络接口;

操作管理系统OMS(Operations Management System),它主要负责网络的监视,状态报告及故障诊断等,在此不作具体介绍。

GSM网络结构图如下:

img

GSM数据业务:http://www.tlsun.com.cn/tc/index_menu2.asp?menu_serial=17&menu_id=68

二、GPRS叠加网络结构(2.5G)

从GSM网络(2G)演进到GPRS网络(2.5G),最主要的变化是引入了分组交换业务。原有的GSM网络是基于电路交换技术,不具备支持分组交换业务的功能。因此,为了支持分组业务,在原有GSM网络结构上增加了几个功能实体,相当与在原有网络基础上叠加了一小型网络,共同构成GPRS网络。

接入网方面,在BSC上增加了分组控制单元PCU(Packet Control Unit),用以提供分组交换通道;

核心网方面,增加了服务型GPRS支持节点SGSN(Service GPRS Supported Node)和网关型GPRS支持节点GGSN(Gateway GPRS Supported Node),功能方面与MSC和GMSC一致,只不过处理的是分组业务,外部网络接入IP网;

从GPRS叠加网络结构开始,引入了两个概念。一个是电路交换域,一个是分组交换域,也就是我们常说的Cs域与Ps域。

GPRS叠加网络结构图如下:

img

三、UMTS网络结构(3G)

通信技术发展到3G,在速率发面有了质的提高,而网络结构上,同样发生巨大变化。

首先,伴随技术的发展,空中接口也随之改变。之前网络结构中的Um空中接口换成了Uu接口,而接入网与核心网接口也换成了Iu口;然后,在接入网方面,不再包含BTS和BSC,取而代之的是基站NodeB与无线网络控制器RNC(Radio Network Controller),功能方面与之前保持一致,在核心网方面基本与原有网络共用,无太大区别。

NodeB的功能:主要完成射频处理和基带处理两大类工作。射频处理:主要完成发送或接收高频无线信号,以及高频无线信号和基带信号的相互转换功能;基带处理:主要完成信道编/译码、复用/解复用、扩频调制及解扩/解调功能。

RNC的功能:主要负责控制和协调基站间配合工作,主要完成系统接入控制、承载控制、移动性管理、宏分集合并、无线资源管理等控制功能。

CS域:电路交换,主要包括一些语音业务,也包括电路型数据业务,最常见的是传真业务;

PS域:分组交换,主要是常见的数据业务,也包括流媒体业务、VOIP(voice over IP)等等。

UMTS网络结构图如下:

img

四、LTE网络结构(4G)

很多人说所谓的4G,即LTE技术不是一种演进,而是一场变革。其实,我们不需要太多的了解技术细节,但从网络结构方面,我们就能看出一二。

整个LTE网络从接入网和核心网方面分为E-UTRAN和EPC。首先,接入网方面,它不再包含两种功能实体,整个网络只有一种基站eNodeB,它包含了整个NodeB和部分RNC的功能,演进过程可以概括为:“少一层,多一口,胖基站”;其次,EPC(Evolved Packet Core)方面,它对之前的网络结构能够保持前向兼容,而自身结构方面,也不再有之前各种实体部分,取而代之的主要就换成了移动管理实体MME(Mobile Management Entity)与服务网关S-GW,分组数据网关,外部网络只接入IP网。

1.无线接入网:

少一层:四层组网架构变为三层,去掉了RNC(软切换功能也不复存在),减少了基站和核心网之间信息交互的多节点开销,用户平面时延大大降低,系统复杂性降低;

多一口:以往无线制式基站之间是没有连接的,而eNodeB直接通过****X2接口****有线连接,可以以光纤为载体,实现无线侧IP化传输,使得基站网元之间可以协调工作。当eNodeB互连后,形成类似于“mesh”的网络,避免某个基站成为孤点,增强了网络的健壮性;

胖基站:eNodeB的功能由3G阶段的NodeB,RNC,SGSN,GGSN的部分功能演化而来,新加了系统接入控制、承载控制、移动性管理、无线资源管理、路由选择等。

2.核心网:1)CS域的业务承载在PS域,实现了核心网的IP化。通常所说的“单一网络了架构”,就是指全网为基于分组业务的网络架构;

​ 2)全网IP化:各网元节点间的接口也使用IP传输。互联网中的IP传输比无线通信中的ATM传输效率高,但IP传输是Best Effort的传输方式,缺乏QoS保障。LTE全网IP化的关键支撑就是端到端的QoS保障机制。

​ 3)控制面和用户面相分离。

LTE网络结构如下图:

img

从以上四幅结构图,基本就可以包括2G到4G网络结构的演进过程,过程中发生的变化也比较清晰,对比总结,可以得出两个趋势吧,也是众口相传,讲烂了的。不过,我从这几个连续的图能够有更感性的认识:一,网络结构趋向于实体减少,也就是网上书中所谓的扁平化,带来的好处就是减少成本,降低时延;二,所有的通信最终连接至全IP网络。通过这样一番的学习过程,我对通信技术与计算机网络的融合,特别是VoIP技术更加期待。之前在看《浪潮之巅》一书中,有关思科与微软部分,都早已在VoIP方面都有长远的规划,这个领域大有作为,对我自己拭目以待。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_51055876/article/details/121277741

智能推荐

普里姆算法c语言(详细解读)_c语言普里姆算法-程序员宅基地

文章浏览阅读854次,点赞5次,收藏12次。找到与这个系统邻接的边(0,1),(5,4),比较两者的权值,容易发现权值最小的为25,因此加入边(5,4),同时加入结点4和边(5,4)。4.将0,5,4,3以及相关的边看成一个整体,与其邻接的边有(0,1)28,(4,6)24,(3,6)18,(3,2)12,四个边中权值最小的边是(3,2),所以加入结点2以及边(3,2)。5.与4中所构成的整体邻接的边有(0,1)28,(4,6)24,(3,6)18,(2,1)16,四者中权值最小的边为(2,1),所以加入结点1以及边(2,1)。_c语言普里姆算法

nohub 和 & 在linux上不间断后台运行程序-程序员宅基地

文章浏览阅读3.1k次,点赞2次,收藏15次。长时间在服务器上运行深度学习代码,使用nohub 命令行 & 可以让代码不间断在后台运行_nohub

Policy-based Reinforcement learning_policy函数-程序员宅基地

文章浏览阅读4k次,点赞18次,收藏69次。强化学习这一章会讲基于策略的强化学习Value-Based Reinforcement Learning-DQN强化学习前言一、policy函数二、DQN2.1 游戏中agent的目标是什么?2.2 agent如何做决策?2.3 如何理解Q* 函数呢?2.5 DQN打游戏?三、如何训练DQN?3.1 TD算法3.2 TD算法训练DQN四、训练步骤六、总结前言说明一下:这是我的一个学习笔记,课程链接如下:最易懂的强化学习课程公众号:AI那些事一、policy函数我们回顾一下Acti_policy函数

project2016调配资源冲突-程序员宅基地

文章浏览阅读5.4k次,点赞9次,收藏26次。(1) Project查看资源负荷情况的方法和结果在工时类资源会存在资源过度分配(在同一个时间段给工时类资源分配的资源超出了他的最大单位)的情况,而成本类、材料类资源则不会有、查看资源负荷的方法有:在视图栏------资源图表如下图在这里我们可以看到每个资源的分配状况,如下图滚动鼠标滑轮就会出现不同的资源分配状况此时选择“资源”—“下一个资源过度分配处”如下图总结:甘特图、..._project2016调配资源冲突

推荐算法知识图谱模型(二):KGCN-程序员宅基地

文章浏览阅读235次。常用的KGE方法侧重于建模严格的语义相关性(例如,TransE和TransR假设头+关系=尾),这更适合于KG补全和链接预测等图内应用,而不是推荐。更自然、更直观的方法是直接设计一个图算法来利用KG结构。_图谱模型

ajax跨域与cookie跨域_一级域名 的cookie ajax 请求二级域名时获取cookie-程序员宅基地

文章浏览阅读389次。ajax跨域ajax跨域取数据(利用可以跨域加载js的原理 functioncallback(){ }这是需要返回这样一个js函数)ajax数据类型使用jsonp :如 ajax{ url:..._一级域名 的cookie ajax 请求二级域名时获取cookie

随便推点

力扣——206.反转链表_力扣链表反转-程序员宅基地

文章浏览阅读141次。题目python代码方法一:利用新列表,创建新的链表# Definition for singly-linked list.# class ListNode(object):# def __init__(self, val=0, next=None):# self.val = val# self.next = nextclass Solution(object): def reverseList(self, head): ""_力扣链表反转

如何解决深度冲突(Z-fighting),画面闪烁的问题-程序员宅基地

文章浏览阅读3.6k次,点赞3次,收藏6次。参考:OpenGL教程:深度测试深度冲突一个很常见的视觉错误会在两个平面或者三角形非常紧密地平行排列在一起时会发生,深度缓冲没有足够的精度来决定两个形状哪个在前面。结果就是这两个形状不断地在切换前后顺序,这会导致很奇怪的花纹。这个现象叫做深度冲突(Z-fighting),因为它看起来像是这两个形状在争夺(Fight)谁该处于顶端。防止深度冲突第一个也是最重要的技巧是永远不要把多个物体摆得太靠近,以至于它们的一些三角形会重叠。通过在两个物体之间设置一个用户无法注意到的偏移值,你可以完全避免这两个物体之_深度冲突

Android 第三方库--2017年Android开源项目及库汇总_panel.travel-tv.top-程序员宅基地

文章浏览阅读1.1k次。转自:http://blog.csdn.net/jsonnan/article/details/62215287东西有点多,但是资源绝对nice,自己都全部亲身体验过了,大家可放心使用github排名:https://github.com/trending,github搜索:https://github.com/searchUIAwesome-MaterialDesign..._panel.travel-tv.top

adb链接模拟器_adbconnect连接模拟器-程序员宅基地

文章浏览阅读1.3k次。不同的模拟器的端口不一样,所以链接不同的模拟器有不同的链接方式不指定端口 默认adb 链接的是5555端口夜神模拟器adb connect 127.0.0.1:62001逍遥模拟器adb connect 127.0.0.1:21503mumu模拟器(网易的)adb connect 127.0.0.1:7555window电脑一般都会带有adb的命令,直接去命令行页面使用adb 链接..._adbconnect连接模拟器

Python绘图Matplotlib手册-程序员宅基地

文章浏览阅读516次。Python绘图Matplotlib手册_matplotlib手册

lego-loam阅读理解笔记 一_horizon_angle = atan2(p.x, p.y) * 180.0 / m_pi;-程序员宅基地

文章浏览阅读1.3k次。前言论文:https://ieeexplore.ieee.org/abstract/document/8594299ego-loam源码地址:https://github.com/RobustFieldAutonomyLab/LeGO-LOAM文章原理讲解除了看论文,看看这些博客:LeGO-LOAM:轻量级地面优化的建图其他博客代码理解推荐:https://blog.csdn.net/orange_littlegirl/article/details/95238586安装编译..._horizon_angle = atan2(p.x, p.y) * 180.0 / m_pi;

推荐文章

热门文章

相关标签