大模型PEFT技术原理(一):BitFit、Prefix Tuning、Prompt Tuning_peft中的主流技术方案-程序员宅基地

技术标签: 笔记  ChatGPT  人工智能  prompt  

       随着预训练模型的参数越来越大,尤其是175B参数大小的GPT3发布以来,让很多中小公司和个人研究员对于大模型的全量微调望而却步,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning),即固定住Pretrain Language model(PLM)的大部分参数,仅调整模型的一小部分参数来达到与全部参数的微调接近的效果(调整的可以是模型自有的参数,也可以是额外加入的一些参数)。本文将介绍一些常见的参数高效微调技术,比如:BitFit、Prefix Tuning、Prompt Tuning、P-Tuning、P-Tuning v2、Adapter Tuning及其变体、LoRA、AdaLoRA、QLoRA、MAM Adapter、UniPELT等。

1、BitFit

论文地址:https://aclanthology.org/2022.acl-short.1.pdf

代码地址:https://github.com/benzakenelad/BitFit

       BitFIt只对模型的bias进行微调。在小规模-中等规模的训练数据上,BitFit的性能与全量微调的性能相当,甚至有可能超过,在大规模训练数据上,与其他fine-tuning方法也差不多。在大模型中bias存在Q,K,V,MLP,LayerNorm中,具体公式如下:

图片

图片

图片

      在Bert-Base/Bert-Large这种模型里,bias参数仅占模型全部参数量的0.08%~0.09%。但是通过在Bert-Large模型上基于GLUE数据集进行了 BitFit、Adapter和Diff-Pruning的效果对比发现,BitFit在参数量远小于Adapter、Diff-Pruning的情况下,效果与Adapter、Diff-Pruning想当,甚至在某些任务上略优于Adapter、Diff-Pruning。

图片

       通过Bitfit训练前后的参数对比,发现很多bias参数没有太多变化,例如跟计算key所涉及到的bias参数。发现其中计算query与中间MLP层的bias(将特征维度从N放大到4N的FFN层——将输入从768d转化为到3072d)变化最为明显,只更新这两类bias参数也能达到不错的效果,反之,固定其中任何一者,模型的效果都有较大损失。

图片

作者给出了Hugging Face与BitFit参数的映射关系表,如下所示:

图片

2、Prefix Tuning

论文地址:https://arxiv.org/pdf/2101.00190.pdf

代码地址:https://github.com/XiangLi1999/PrefixTuning

       prefix-tuning方法是一个轻量级的fine-tuning方法用于自然语言处理的生成任务。该方法可以保持预训练语言模型参数固定(frozen),而只需要在task-specific vector(称为prefix)上进行优化。即只需要少量(约0.1%)的优化参数,即可以在量和小量数据上达到不错的效果。

针对不同的模型结构,需要构造不同的Prefix。

  • 针对自回归架构模型:在句子前面添加前缀,得到 z = [PREFIX; x; y],合适的上文能够在固定 LM 的情况下去引导生成下文(比如:GPT3的上下文学习)。

  • 针对编码器-解码器架构模型:Encoder和Decoder都增加了前缀,得到 z = [PREFIX1; x; PREFIX2; y]。Encoder端增加前缀是为了引导输入部分的编码,Decoder 端增加前缀是为了引导后续token的生成。

图片

        如上图所示,  P_{idx}表示prefix indices序列,  |P_{idx}|表示prefix的长度。Prefix-tuning通过初始化可训练矩阵P_\theta  (维度为 |P_{idx} \times dim(h_i)| )来存储prefix参数:

 h_i=\left\{\begin{matrix} P_\theta [i,:], ifi even\\ LM_\phi (z_i,h<i), othervise\end{matrix}\right.

       training objective与Fine-tuning相同,但语言模型的参数\phi 固定,仅仅prefix参数\theta是可训练参数。因此h_i是可训练的P_\theta的函数,当i\in P_{idx}时,   h_i由 P_\theta 直接复制得到,对于i\notin P_{idx}  , 由于prefix activations始终在left context因此可以影响到   h_i 。

       在实验上,直接更新P_\theta  的参数会导致优化的不稳定以及表现上的极具下降。因此通过使用较小的矩阵 {P}'_\theta 通过大型前馈神经网络(MLP_\theta  )来reparametrize矩阵P_\theta  :

P_\theta [i,:] = MLP_\theta ({P}'_\theta [i,:])  

        其中,  P_\theta和 {P}'_\theta 在相同的行维度(也就是相同的prefix length), 但不同的列维度。当训练完成后,reparametrization参数被丢掉,仅仅prefix(P_\theta )  需要被保存下来。

        实验中对比了Fine Tuning和Prefix Tuning在E2E、WebNLG和DART三个table-to-text任务上的效果:

图片

图片

3、Prompt Tuning

论文地址:https://arxiv.org/pdf/2104.08691.pdf

代码地址:https://github.com/google-research/prompt-tuning

       Prompt Tuning可以看作是Prefix Tuning的简化版本,面向NLU任务,进行了更全面的效果对比,并且在大模型上成功打平了LM微调的效果,它给每个任务定义了自己的Prompt,然后拼接到数据上作为输入,但只在输入层加入prompt tokens,并且不需要加入 MLP 进行调整来解决难训练的问题。通过反向传播更新参数来学习prompts,而不是人工设计prompts;同时冻结模型原始权重,只训练prompts参数,训练完以后,用同一个模型可以做多任务推理。

图片

对比Prefix-Tunning,prompt-tuning的主要差异如下,

      论文使用100个prefix token作为默认参数,大于以上prefix-tuning默认的10个token,不过差异在于prompt-Tunning只对输入层(Embedding)进行微调,而Prefix是对虚拟Token对应的上游layer全部进行微调。因此Prompt-Tunning的微调参数量级要更小,且不需要修改原始模型结构,这是“简化”的来源。相同的prefix长度,Prompt-Tunning(<0.01%)微调的参数量级要比Prefix-Tunning(0.1%~1%)小10倍以上,如下图所示

图片

      为什么上面prefix-tuning只微调embedding层效果就不好,放在prompt-tuning这里效果就好了呢?因为评估的任务不同无法直接对比,个人感觉有两个因素,一个是模型规模,另一个是继续预训练,前者的可能更大些,在下面的消融实验中会提到   

效果&消融实验

      在SuperGLUE任务上,随着模型参数的上升,PromptTunning快速拉近和模型微调的效果,110亿的T5模型(上面prefix-tuning使用的是15亿的GPT2),已经可以打平在下游多任务联合微调的LM模型,并且远远的甩开了Prompt Design(GPT3 few-shot)

图片

      作者也做了全面的消融实验,包括以下4个方面,最核心的感受就是只要模型足够够大一切都好说

  1. prompt长度(a):固定其他参数,作者尝试了{1,5,20,100,150}, Prompt token 的长度在20左右时的表现已经不错(超过20之后,提升Prompt token长度,对模型的性能提升不明显了),同样的,这个gap也会随着模型参数规模的提升而减小(即对于超大规模模型而言,即使 Prompt token 长度很短,对性能也不会有太大的影响);

  2. Prompt初始化(b): 作者尝试了随机uniform初始化,用标签文本空间初始化,和用Top5K高频词采样初始化,在10^8规模,类标签词初始化效果最好。作者发现预测label也会在对应prompt空间内。不过到百亿规模后,初始化带来的影响就会消失;

  3. T5继续预训练(c):作者认为T5本身的Span Corruption预训练目标和掩码词,并不适合冻结LM的场景,因为在微调中模型可以调整预训练目标和下游目标的差异,而只使用prompt可能无法弥合差异。其实这里已经能看出En-Dn框架在生成场景下没有GPT这样的Decoder来的自然。因此作者基于LM目标对T5进行继续预训练;

  4. 继续预训练step(d):以上的继续预训练steps,继续预训练步数越高,模型效果在不同模型规模上越单调;

图片

可解释性

      考虑Prompt-Tunning使用Embedding来表征指令,可解释性较差。作者使用cosine距离来搜索prompt embedding对应的Top5近邻。发现如下:

  • embedding的近邻出现语义相似的cluster,例如{ Technology / technology / Technologies/ technological / technologies }, 说明连续prompt实际可能是相关离散prompt词的聚合语义

  • 当连续prompt较长(len=100), 存在多个prompt token的KNN相同:个人认为这和prefix-tuning使用MLP那里我的猜测相似,prompt应该是一个整体

  • 使用标签词初始化,微调后标签词也大概率会出现在prompt的KNN中,说明初始化可以提供更好的prior信息加速收敛

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/wshzd/article/details/135509519

智能推荐

没有U盘Win10电脑下如何使用本地硬盘安装Ubuntu20.04(单双硬盘都行)_没有u盘怎么装ubuntu-程序员宅基地

文章浏览阅读3.6k次,点赞2次,收藏2次。DELL7080台式机两块硬盘。_没有u盘怎么装ubuntu

【POJ 3401】Asteroids-程序员宅基地

文章浏览阅读32次。题面Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conv...

工业机器视觉系统的构成与开发过程(理论篇—1)_工业机器视觉系统的构成与开发过程(理论篇—1-程序员宅基地

文章浏览阅读2.6w次,点赞21次,收藏112次。机器视觉则主要是指工业领域视觉的应用研究,例如自主机器人的视觉,用于检测和测量的视觉系统等。它通过在工业领域将图像感知、图像处理、控制理论与软件、硬件紧密结合,并研究解决图像处理和计算机视觉理论在实际应用过程中的问题,以实现高效的运动控制或各种实时操作。_工业机器视觉系统的构成与开发过程(理论篇—1

plt.legend的用法-程序员宅基地

文章浏览阅读5.9w次,点赞32次,收藏58次。legend 传奇、图例。plt.legend()的作用:在plt.plot() 定义后plt.legend() 会显示该 label 的内容,否则会报error: No handles with labels found to put in legend.plt.plot(result_price, color = 'red', label = 'Training Loss') legend作用位置:下图红圈处。..._plt.legend

深入理解 C# .NET Core 中 async await 异步编程思想_netcore async await-程序员宅基地

文章浏览阅读2.2k次,点赞3次,收藏11次。深入理解 C# .NET Core 中 async await 异步编程思想引言一、什么是异步?1.1 简单实例(WatchTV并行CookCoffee)二、深入理解(异步)2.1 当我需要异步返回值时,怎么处理?2.2 充分利用异步并行的高效性async await的秘密引言很久没来CSDN了,快小半年了一直在闲置,也写不出一些带有思想和深度的文章;之前就写过一篇关于async await 的异步理解 ,现在回顾,真的不要太浅和太陋,让人不忍直视!好了,废话不再啰嗦,直入主题:一、什么是异步?_netcore async await

IntelliJ IDEA设置类注释和方法注释带作者和日期_idea作者和日期等注释-程序员宅基地

文章浏览阅读6.5w次,点赞166次,收藏309次。当我看到别人的类上面的多行注释是是这样的:这样的:这样的:好装X啊!我也想要!怎么办呢?往下瞅:跟着我左手右手一个慢动作~~~File--->Settings---->Editor---->File and Code Templates --->Includes--->File Header:之后点applay--..._idea作者和日期等注释

随便推点

发行版Linux和麒麟操作系统下netperf 网络性能测试-程序员宅基地

文章浏览阅读175次。Netperf是一种网络性能的测量工具,主要针对基于TCP或UDP的传输。Netperf根据应用的不同,可以进行不同模式的网络性能测试,即批量数据传输(bulk data transfer)模式和请求/应答(request/reponse)模式。工作原理Netperf工具以client/server方式工作。server端是netserver,用来侦听来自client端的连接,c..._netperf 麒麟

万字长文详解 Go 程序是怎样跑起来的?| CSDN 博文精选-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏3次。作者| qcrao责编 | 屠敏出品 | 程序员宅基地刚开始写这篇文章的时候,目标非常大,想要探索 Go 程序的一生:编码、编译、汇编、链接、运行、退出。它的每一步具体如何进行,力图弄清 Go 程序的这一生。在这个过程中,我又复习了一遍《程序员的自我修养》。这是一本讲编译、链接的书,非常详细,值得一看!数年前,我第一次看到这本书的书名,就非常喜欢。因为它模仿了周星驰喜剧..._go run 每次都要编译吗

C++之istringstream、ostringstream、stringstream 类详解_c++ istringstream a >> string-程序员宅基地

文章浏览阅读1.4k次,点赞4次,收藏2次。0、C++的输入输出分为三种:(1)基于控制台的I/O (2)基于文件的I/O (3)基于字符串的I/O 1、头文件[cpp] view plaincopyprint?#include 2、作用istringstream类用于执行C++风格的字符串流的输入操作。 ostringstream类用_c++ istringstream a >> string

MySQL 的 binglog、redolog、undolog-程序员宅基地

文章浏览阅读2k次,点赞3次,收藏14次。我们在每个修改的地方都记录一条对应的 redo 日志显然是不现实的,因此实现方式是用时间换空间,我们在数据库崩了之后用日志还原数据时,在执行这条日志之前,数据库应该是一个一致性状态,我们用对应的参数,执行固定的步骤,修改对应的数据。1,MySQL 就是通过 undolog 回滚日志来保证事务原子性的,在异常发生时,对已经执行的操作进行回滚,回滚日志会先于数据持久化到磁盘上(因为它记录的数据比较少,所以持久化的速度快),当用户再次启动数据库的时候,数据库能够通过查询回滚日志来回滚将之前未完成的事务。_binglog

我的第一个Chrome小插件-基于vue开发的flexbox布局CSS拷贝工具_chrome css布局插件-程序员宅基地

文章浏览阅读3k次。概述之前介绍过 移动Web开发基础-flex弹性布局(兼容写法) 里面有提到过想做一个Chrome插件,来生成flexbox布局的css代码直接拷贝出来用。最近把这个想法实现了,给大家分享下。play-flexbox插件介绍play-flexbox一秒搞定flexbox布局,可直接预览效果,拷贝CSS代码快速用于页面重构。 你也可以通过点击以下链接(codepen示例)查_chrome css布局插件

win10下安装TensorFlow-gpu的流程(包括cuda、cuDnn下载以及安装问题)-程序员宅基地

文章浏览阅读308次。我自己的配置是GeForce GTX 1660 +CUDA10.0+CUDNN7.6.0 + TensorFlow-GPU 1.14.0Win10系统安装tensorflow-gpu(按照步骤一次成功)https://blog.csdn.net/zqxdsy/article/details/103152190环境配置——win10下TensorFlow-GPU安装(GTX1660 SUPER+CUDA10+CUDNN7.4)https://blog.csdn.net/jiDxiaohuo/arti