深度学习修炼(一)线性分类器 | 权值理解、支撑向量机损失、梯度下降算法通俗理解-程序员宅基地

技术标签: python  机器学习  深度学习  计算机视觉CV  


如图是神经网络训练的一般过程总结图
今天从线性分类器开始
在这里插入图片描述
为什么我们从线性分类器开始?是由于线性分类器的基本特点决定的

1 基本特点

​ 形式简单、易于理解,通过层级结构(神经网路)或者高维映射(支撑向量机)可以形成功能强大的非线性模型。
从某种意义上来说,未来的卷积网络以及更为复杂的网络都离不开线性分类器

​ 线性分类器是一种线性映射,将输入的图像特征映射为类别分数

2 训练过程

2.1 图像预处理

​ 比如张CIFAR10 中每一张图像像素为32×32 ,每一个(采用RGB)像素通道为3,我们首先要将图片转换为一个向量,转换方式多种,现在我们只做简单的转换方式,用一个32×32×3=3072维的列向量来表示我们这张图片。

2.2 线性分类器构造

f i ( x , w i ) = w i T x + b i f_i(x,w_i)=w_i^Tx+b_i fi(x,wi)=wiTx+bi i = 1 , . . . , c i=1,...,c i=1,...,c

  • x代表输入的d维图像向量 这个例子是3072维度的向量
  • w i = [ w i 1 , . . . , w i d ] T w_i=[w_{i1},...,w_{id}]^T wi=[wi1,...,wid]T为第i个类别的权值向量,行数由类别数决定,如以上例子有10类,列数由输入的x向量的维度决定,如以上例子为3072维 因而 w i w_i wi的维度为10×3072
  • b i b_i bi为偏置值。

当我们把一张图片(转换为3072×1的向量),输入到这个式子中,得到每个类下这张图片的分数(10×1的列向量),分数越高,是该类别的可能性就越大
在这里插入图片描述

然后我们就需要让模型不断优化这些参数,使得最后正确的类别的分数尽可能高
在线性模型的例子中,我们本质学习到什么?就是上图的这个W矩阵 ! 也就是分类器的权值,优化模型也就是优化这里的权值
那边该怎么理解这个权值呢?

2.2.1多角度理解我们分类器的权值W

理解线性分类器的角度一

线性分类器的w权值信息,其实就是训练样本的平均值,统计信息,是每一类别的一个模板。由于W也是3072维的,因而我们可以进行权值模板的可视化

我们可以把它显示为32×32×3的图片,这时候就会得到10张图片,对应10类,我们实际上是将权值W可视化,观察我们可以发现:每一类其实就是该类下各个图片的一个均值,一个统计信息,如果我们新输入的图片和某一类模板相似,就会导致该类模板对应的额分数更高。

比如这里的W8代表马类,观察到两个马头,一个朝左,一个朝右,为什么呢?因为训练样本中就有的马头朝左,有的马头朝右

在这里插入图片描述

理解线性分类器权值角度二

如图,我们实际上就是要找一些分界面,来把不同类比的分开,如下面的红蓝绿线

  • 我们距离线越远,他的得分越高,也就意味着相应的类别特征越明显
  • 距离线越近,得分越低,也就类别特征越模糊

分数等于0的相当于一个决策面 分界面。

w控制着线的方向,b控制着分界面的偏移

在这里插入图片描述
但是真实世界中的数据集往往都不是线性可以分开的,线性网络表现会很差
所以在此基础上有很多非线性操作进行改进,如多层感知机,卷积等

2.3 损失函数计算损失值

我们要优化模型参数,就离不开损失函数的帮助

2.3.1 损失函数定义

什么是损失函数呢?

比如我们的真实值是猫咪,设有两组权值他们对于猫咪的预测的分数都是最高的,但我们权值一预测猫咪的分数是900分,权值二预测的分数是100分,很明显权值一更好,因而我们就是通过损失函数来定量的展现这样的差异。

它搭建了模型性能与模型参数之间的桥梁,指导模型参数的优化,

它其实是预测值与真实值的不一致程度,量化了这个指标,我们把它称为损失值,损失值越大,不一致程度越大,也就预测的越不准确

我们的每一次学习结束后,都可以对应得到一些新的参数,我们检测新的参数的好坏。

可以拿一百张新的图像去测试,然后把每一张图片的测试结果都对应得到一个损失值,把这一百个损失值加起来除以测试总数一百,就得到我们平均的损失值。反映了这一组参数的整体的水平,抽象为数学表达式为

L = 1 N ∑ ( L i ) L=\frac{1}{N}\sum(L_i) L=N1(Li)

L i L_i Li为 单张图片的损失值

损失函数有很多,先举一个例子

2.3.2 损失举例:多类支撑向量机损失

单样本的多类支撑向量机损失

L i = ∑ m a x ( 0 , s i j − s y i + 1 ) L_i=\sum{max(0,s_{ij}-s_{yi}+1)} Li=max(0,sijsyi+1)

如何直观理解多类支撑向量机损失?

如果模型给 正确类别打的分数比给错误类别的分数高1分及以上,这时损失函数返回为0。
否则的话就是把模型给错误类别的分数加上1分减去我们正确类别的分数就是我们得到的损失值。
看个例子就明白了
横行是模型给一张图的类别判断,分越高,模型觉得图形是哪一类

在这里插入图片描述

如上

  • 第一行的正确类为鸟类,模型给错误类猫类分数比鸟类分数高2.9 超过一分,该项损失值为0,但对于汽车类模型没有高超过一分(反而低),因而错误的汽车类分数+1得到2.9再减去正确类鸟类的分数0.6等于2.3 1.9+1-0.6=2.3 总损失0+2.3=2.3
  • 第二行的正确类为猫类,比错误类鸟类分数高超过一分,该项损失值为0,但对于汽车类没有高超过一分,因而错误的汽车类分数+1得到3.3再减去正确类猫类的分数2.9等于0.4 2.3+1-2.9=0.4 总损失0+0.4=0.4
  • 第三行的正确类为汽车类,比其他错误类的分数都大于一分,因而总损失为零

2.3.3 优化损失函数

即便有了损失值,有时候我们也会出现损失值一模一样的情况,这时候如何评定参数好坏呢?就是通过添加包含超参数正则项损失 其中 λ \lambda λ 是超参数(超参数 不通过学习设置的参数,预先人为设定好的参数)这个超参数的作用是控制着正则项损失在总损失中占得比重

  • λ \lambda λ为0的时候只依靠前面的损失函数
  • λ \lambda λ为无穷的时候仅考虑正则项损失

L = 1 N ∑ ( L i ) + λ R ( W ) L=\frac{1}{N}\sum(L_i)+\lambda R(W) L=N1(Li)+λR(W)

正则项具体可以分为:

​ L1 正则项 把权值矩阵W的每个元素取绝对值后再相加

​ L2 正则项 把权值矩阵W的每个元素先平方再相加

如何直观理解正则项

正则项对于大数权值进行惩罚,喜欢分散权值,鼓励分类器将所有维度的特征值用起来。而不是强烈的依赖其中少说的几维特征。防止模型训练的太好,过拟合(即只能学会自己的数据)。

使得每个维度的特征运用起来,有什么意义呢?

  • 避免受到噪声影响,假设它强烈依赖某一维度,那么一但那一维度受到噪声污染,判断就会严重错误,而如果分散权值,那么即便某一维度受到影响,也不影响整体判断
  • 还有避免模型产生偏好,对某一维度的特征喜欢,产生记忆,因而也就会产生过拟合,所以正则项的一个重要作用就是防止过拟合!!!

我们目前更多地是使用L2正则项,原因是计算方便

不过L1损失函数也有优点,就是L1对于异常值更不敏感,鲁棒性更强

2.4 优化算法

2.4.1 优化的定义?

是机器学习的核心步骤,利用函数的输出值作为反馈信号来调整分类器参数,以提升分类器对训练样本的预测性能。

实际上我们就是要找使得损失函数的值是最小的那一组参数!!!而我们对这类问题并不陌生,高中的时候学习导数的时候讲过求最值问题,实际上是要找一些导数为零的点,这些导数为零的点中就有我们的最小值点。

假如我们只有一个参数W,且损失函数是

L = W 2 + 2 W + 1 L=W^2+2W+1 L=W2+2W+1

我们想要使得损失函数最小,我们可以很轻松知道是在W=-1的位置

但是实际问题中,我们的损失函数L往往非常复杂,同时W也十分庞大,如下图一个简单的线性模型,他的要学习的W的参数量就达到了10*3072维=30720。直接求导数为零的点就会变得十分困难,所以我们通过梯度下降算法来使得损失减小。
在这里插入图片描述

2.4.2 梯度下降算法

​ 它是其中的一种简单而高效的优化算法

​ 设想我们被遮住了双眼,被困在一个寂静的山谷,我们只知道只能在山谷最低的地方才有机会存活下来。我们该怎么办

​ 唯一的办法是四处摸,找到向下的路,然后一点一点从高处移动到低处。
在这里插入图片描述

这 便是梯度下降算法的核心思想

我们需要把全部训练数据样本传入我们的分类器,这时候他就会根据我们的输出类别分数的好坏去调整参数W

相当于此时我们是 L ( W i ) L(W{_i}) L(Wi) 自变量是W,因变量是损失值L

我们只需要解决两个问题

往哪走?

​ 负梯度方向,也就是向导数为负数且变化最快的点走,导数为负的点可以让函数值减小,也就是损失减小

走多远?

​ 步长(也就学习率)来决定,步长也是我们的认识到的第二个超参数

因而我们把问题由找到导数为零的点转换为求某一点的梯度, ∂ f ∂ W i \frac{\partial f}{\partial W_{i}} Wif进而来不断更新权值

权值的梯度 <=计算梯度(损失,训练样本,权值)

​ 权值 <=权值-学习率*权值的梯度

如何来求某一点的梯度呢?也就是在 一个已知一个权值矩阵的基础上如何确定他的梯度

1、 数值法

​ 也就是利用求导的定义式,所以求得的是一个近似值

​ 数值法求梯度主要用于检验解析梯度是否正确

2、 解析法

​ 求这一点的导数,然后代入这一点的值

​ 但这有一个问题,我们每次迭代计算都得把样本中的每一个数据都算一遍!当数据集样本足够大的时候,运算速度就会很慢,因而我们采用以下的方式改进

2.4.3 随机梯度下降算法

也就是我们这次不参考全部样本,而是从样本集合中随机抽取一个来更新。这样就会计算很多了,但是这样有一个问题,就是可能会抽取到噪声等一些不太好的样本,这时候会把我们带偏,但是这种方法依然可行,因为在大量抽样的情况下,整体还是向着梯度下降的方向去的。

2.4.4 小批量梯度下降算法

既然全部抽取速度太慢,部分抽取又可能会不稳定,那我们很容易想到取中间,也就是说我们随机抽取m个样本,计算损失并更新梯度。

这样的话我们计算效率会更高,同时也会更稳定!!!

梯度下降算法(Gradient Descent)的原理和实现步骤 - 知乎 (zhihu.com)

[梯度下降算法原理讲解——机器学习_zhangpaopao0609的博客-程序员宅基地_梯度下降](

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Q52099999/article/details/129132479

智能推荐

EasyDarwin开源流媒体云平台之EasyRMS录播服务器功能设计_开源录播系统-程序员宅基地

文章浏览阅读3.6k次。需求背景EasyDarwin开发团队维护EasyDarwin开源流媒体服务器也已经很多年了,之前也陆陆续续尝试过很多种服务端录像的方案,有:在EasyDarwin中直接解析收到的RTP包,重新组包录像;也有:在EasyDarwin中新增一个RecordModule,再以RTSPClient的方式请求127.0.0.1自己的直播流录像,但这些始终都没有成气候;我们的想法是能够让整套EasyDarwin_开源录播系统

oracle Plsql 执行update或者delete时卡死问题解决办法_oracle delete update 锁表问题-程序员宅基地

文章浏览阅读1.1w次。今天碰到一个执行语句等了半天没有执行:delete table XXX where ......,但是在select 的时候没问题。后来发现是在执行select * from XXX for update 的时候没有commit,oracle将该记录锁住了。可以通过以下办法解决: 先查询锁定记录 Sql代码 SELECT s.sid, s.seri_oracle delete update 锁表问题

Xcode Undefined symbols 错误_xcode undefined symbols:-程序员宅基地

文章浏览阅读3.4k次。报错信息error:Undefined symbol: typeinfo for sdk::IConfigUndefined symbol: vtable for sdk::IConfig具体信息:Undefined symbols for architecture x86_64: "typeinfo for sdk::IConfig", referenced from: typeinfo for sdk::ConfigImpl in sdk.a(config_impl.o) _xcode undefined symbols:

项目05(Mysql升级07Mysql5.7.32升级到Mysql8.0.22)_mysql8.0.26 升级32-程序员宅基地

文章浏览阅读249次。背景《承接上文,项目05(Mysql升级06Mysql5.6.51升级到Mysql5.7.32)》,写在前面需要(考虑)检查和测试的层面很多,不限于以下内容。参考文档https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.htmllink推荐阅读以上链接,因为对应以下问题,有详细的建议。官方文档:不得存在以下问题:0.不得有使用过时数据类型或功能的表。不支持就地升级到MySQL 8.0,如果表包含在预5.6.4格_mysql8.0.26 升级32

高通编译8155源码环境搭建_高通8155 qnx 源码-程序员宅基地

文章浏览阅读3.7k次。一.安装基本环境工具:1.安装git工具sudo apt install wget g++ git2.检查并安装java等环境工具2.1、执行下面安装命令#!/bin/bashsudoapt-get-yinstall--upgraderarunrarsudoapt-get-yinstall--upgradepython-pippython3-pip#aliyunsudoapt-get-yinstall--upgradeopenjdk..._高通8155 qnx 源码

firebase 与谷歌_Firebase的好与不好-程序员宅基地

文章浏览阅读461次。firebase 与谷歌 大多数开发人员都听说过Google的Firebase产品。 这就是Google所说的“ 移动平台,可帮助您快速开发高质量的应用程序并发展业务。 ”。 它基本上是大多数开发人员在构建应用程序时所需的一组工具。 在本文中,我将介绍这些工具,并指出您选择使用Firebase时需要了解的所有内容。 在开始之前,我需要说的是,我不会详细介绍Firebase提供的所有工具。 我..._firsebase 与 google

随便推点

k8s挂载目录_kubernetes(k8s)的pod使用统一的配置文件configmap挂载-程序员宅基地

文章浏览阅读1.2k次。在容器化应用中,每个环境都要独立的打一个镜像再给镜像一个特有的tag,这很麻烦,这就要用到k8s原生的配置中心configMap就是用解决这个问题的。使用configMap部署应用。这里使用nginx来做示例,简单粗暴。直接用vim常见nginx的配置文件,用命令导入进去kubectl create cm nginx.conf --from-file=/home/nginx.conf然后查看kub..._pod mount目录会自动创建吗

java计算机毕业设计springcloud+vue基于微服务的分布式新生报到系统_关于spring cloud的参考文献有啥-程序员宅基地

文章浏览阅读169次。随着互联网技术的发发展,计算机技术广泛应用在人们的生活中,逐渐成为日常工作、生活不可或缺的工具,高校各种管理系统层出不穷。高校作为学习知识和技术的高等学府,信息技术更加的成熟,为新生报到管理开发必要的系统,能够有效的提升管理效率。一直以来,新生报到一直没有进行系统化的管理,学生无法准确查询学院信息,高校也无法记录新生报名情况,由此提出开发基于微服务的分布式新生报到系统,管理报名信息,学生可以在线查询报名状态,节省时间,提高效率。_关于spring cloud的参考文献有啥

VB.net学习笔记(十五)继承与多接口练习_vb.net 继承多个接口-程序员宅基地

文章浏览阅读3.2k次。Public MustInherit Class Contact '只能作基类且不能实例化 Private mID As Guid = Guid.NewGuid Private mName As String Public Property ID() As Guid Get Return mID End Get_vb.net 继承多个接口

【Nexus3】使用-Nexus3批量上传jar包 artifact upload_nexus3 批量上传jar包 java代码-程序员宅基地

文章浏览阅读1.7k次。1.美图# 2.概述因为要上传我的所有仓库的包,希望nexus中已有的包,我不覆盖,没有的添加。所以想批量上传jar。3.方案1-脚本批量上传PS:nexus3.x版本只能通过脚本上传3.1 批量放入jar在mac目录下,新建一个文件夹repo,批量放入我们需要的本地库文件夹,并对文件夹授权(base) lcc@lcc nexus-3.22.0-02$ mkdir repo2..._nexus3 批量上传jar包 java代码

关于去隔行的一些概念_mipi去隔行-程序员宅基地

文章浏览阅读6.6k次,点赞6次,收藏30次。本文转自http://blog.csdn.net/charleslei/article/details/486519531、什么是场在介绍Deinterlacer去隔行处理的方法之前,我们有必要提一下关于交错场和去隔行处理的基本知识。那么什么是场呢,场存在于隔行扫描记录的视频中,隔行扫描视频的每帧画面均包含两个场,每一个场又分别含有该帧画面的奇数行扫描线或偶数行扫描线信息,_mipi去隔行

ABAP自定义Search help_abap 自定义 search help-程序员宅基地

文章浏览阅读1.7k次。DATA L_ENDDA TYPE SY-DATUM. IF P_DATE IS INITIAL. CONCATENATE SY-DATUM(4) '1231' INTO L_ENDDA. ELSE. CONCATENATE P_DATE(4) '1231' INTO L_ENDDA. ENDIF. DATA: LV_RESET(1) TY_abap 自定义 search help