SPDK Thread 模型设计与实现_spdk c++-程序员宅基地

技术标签: spring  SPDK  c++无锁队列  C++后端开发  网络编程  C++Linux后端  Thread  

Reactor – 单个CPU Core抽象,主要包含了:

  • Lcore对应的CPU Core id
  • Threads在该核心下的线程
  • Events 这是一个spdk ring,用于事件传递接收

Thread – 线程,但它是spdk抽象出来的线程,主要包含了:

  • io_channels资源的抽象,可以是bdev,也可以是具体的tgt
  • tailq 线程队列,用于连接下一个线程
  • name 线程的名称
  • Stats 用于计时统计闲置和忙时时间的
  • active_pollers 轮询使用的poller,非定时
  • timer_pollers 定时的poller
  • messages 这是一个spdk ring,用于消息传递接收
  • msg_cache 事件的缓存

1.1 Reactor

对象g_reactor_state有五个状态对应了应用中reactors运行运行状态,

enum spdk_reactor_state {
 SPDK_REACTOR_STATE_INVALID = 0,
 SPDK_REACTOR_STATE_INITIALIZED = 1,
 SPDK_REACTOR_STATE_RUNNING = 2,
 SPDK_REACTOR_STATE_EXITING = 3,
 SPDK_REACTOR_STATE_SHUTDOWN = 4,
};

本文福利, 免费领取C++学习资料包、技术视频/代码,1000道大厂面试题,内容包括(C++基础,网络编程,数据库,中间件,后端开发,音视频开发,Qt开发)↓↓↓↓↓↓见下面↓↓文章底部点击免费领取↓↓

初始情况下是:

SPDK_REACTOR_STATE_INVALID状态,在spdk app(任意一个target,比如nvmf_tgt)启动时,即调用了spdk_app_start方法,会调用spdk_reactors_init,在这个方法中将会初始化所有需要被初始化的reactors(可以在配置文件中指定需要使用的Core,CPU Core 和reactor是一对一的)。并且会将g_reactor_state设置为SPDK_REACTOR_STATE_INITIALIZED。具体代码如下:

Int spdk_reactors_init(void)
{
        // 初始化所有的event mempool
        g_spdk_event_mempool = spdk_mempool_create(…);
        // 为g_reactors分配内存,g_reactors是一个数组,管理了所有的reactors
posix_memalign((void **)&g_reactors, 64,  (last_core + 1) * sizeof(struct spdk_reactor));
// 这里设置了reactor创建线程的方法,之后需要初始化线程的时候将会调用该方法
spdk_thread_lib_init(spdk_reactor_schedule_thread, sizeof(struct spdk_lw_thread));
// 对于每一个启动的reactor,将会初始化它们
// 初始化reactor过程,即为绑定lcore,初始化spdk ring、threads,对rusage无操作
SPDK_ENV_FOREACH_CORE(i) {
reactor = spdk_reactor_get(i);
spdk_reactor_construct(reactor, i);
}
               // 设置好状态返回
g_reactor_state = SPDK_REACTOR_STATE_INITIALIZED;
return 0;
}

在进入SPDK_REACTOR_STATE_INITIALIZED状态且spdk_app_start在创建了自己的线程并绑定到了reactors后,会调用spdk_reactors_start方法并将g_reactor_state设置为SPDK_REACTOR_STATE_RUNNING状态并会创建所有reactor的线程且轮询。

Void spdk_reactors_start(void) {
SPDK_ENV_FOREACH_CORE(i) {
                       if (i != current_core) { // 在非master reactor中
                                      reactor = spdk_reactor_get(i); // 得到相应的reactor
                                      // 设置好线程创建后的一个消息,该消息为轮询函数
                                      rc = spdk_env_thread_launch_pinned(reactor->lcore, _spdk_reactor_run, reactor);
                                      // reactor创建好线程并且会自动执行第一个消息
                                     spdk_thread_create(thread_name, tmp_cpumask);
}
}
// 当前CPU core得到reactor,并且开始轮询
               reactor = spdk_reactor_get(current_core);
               _spdk_reactor_run(reactor);
}

之前提到spdk_reactors_init方法中调用了spdk_thread_lib_init方法传入了创建thread的spdk_reactor_schedule_thread方法,在调用spdk_thread_create会回调该方法。这个方法它主要的功能就是告诉这个新创建的线程绑定创建该线程的reactor。

spdk_reactor_schedule_thread(struct spdk_thread *thread)
{
               // 得到该线程设置的cpu mask
               cpumask = spdk_thread_get_cpumask(thread);
               for (i = 0; i < spdk_env_get_core_count(); i++) {
                              …. // 遍历cpu core
                              // 通过cpu mask找到对应的核心,并产生event
                              if (spdk_cpuset_get_cpu(cpumask, core)) {
                                             evt = spdk_event_allocate(core, _schedule_thread, lw_thread, NULL);
                                             break;
                              }
               }
               // 传递该event,即对应的reatcor会调用_schedule_thread方法,
spdk_event_call(evt);
}
_schedule_thread(void *arg1, void *arg2)
{
               struct spdk_lw_thread *lw_thread = arg1;
               struct spdk_reactor *reactor;
               // 消息传递到对应的reactor后将该thread加入到reactor中
reactor = spdk_reactor_get(spdk_env_get_current_core());
               TAILQ_INSERT_TAIL(&reactor->threads, lw_thread, link);
}
在SPDK_REACTOR_STATE_RUNNING后,此时所有reactor就进入了轮询状态。_spdk_reactor_run函数为线程提供了轮询方法:
static int _spdk_reactor_run(void *arg) {
        while (1) {
                       // 处理reactor上的event消息,消息会在之后讲到
                       _spdk_event_queue_run_batch(reactor);
                       // 每一个reactor上注册的thread进行遍历并且处理poller事件
                       TAILQ_FOREACH_SAFE(lw_thread, &reactor->threads, link, tmp) {
                                      rc = spdk_thread_poll(thread, 0, now);
                       }
                       // 检查reactor的状态
                       if (g_reactor_state != SPDK_REACTOR_STATE_RUNNING) {
                                      break;
                       }
}
}

而当spdk app被调用spdk_app_stop方法后将会相应的通知每一个reactor调用spdk_reactors_stop方法,将g_reactor_state赋值为SPDK_REACTOR_STATE_EXITING,即开始退出了。回到_spdk_reactor_run函数中,轮询将会被跳出,并且执行销毁线程的代码。

static int _spdk_reactor_run(void *arg) {
        …..  // 轮询
        TAILQ_FOREACH_SAFE(lw_thread, &reactor->threads, link, tmp) {
                       thread = spdk_thread_get_from_ctx(lw_thread);
                       TAILQ_REMOVE(&reactor->threads, lw_thread, link);
                       spdk_set_thread(thread);
                       spdk_thread_exit(thread);
                       spdk_thread_destroy(thread);
        }
}

在这之后,主线程的_spdk_reactor_run会返回到spdk_reactors_start中,并将g_reactor_state赋值为SPDK_REACTOR_STATE_SHUTDOWN,返回到spdk_app_start中等待应用退出。

最后,总结一下reactors和CPU core以及spdk thread关系应该如图1所示

图1 CPU cores、reactors和thread关系图

Reactor生命周期流程图则如图2所示

图2 reactor生命周期流程图

1.2 thread

当Reactors进行轮询时,除了处理自己的事件消息之外,还会调用注册在该reactor下面的每一个线程进行轮询。不过通常一个reactor只有一个thread,在spdk应用中,更多的是注册多个poller而不是注册多个thread。具体的轮询方法为:

Int spdk_thread_poll(struct spdk_thread *thread, uint32_t max_msgs, uint64_t now) {
        // 首先先处理ring传递过来的消息
        msg_count = _spdk_msg_queue_run_batch(thread, max_msgs);
        // 调用非定时poller中的方法
TAILQ_FOREACH_REVERSE_SAFE(poller, &thread->active_pollers,
                                                        active_pollers_head, tailq, tmp) {
                       // 调用poller注册的方法之前,会对poller状态检测且转换
if (poller->state == SPDK_POLLER_STATE_UNREGISTERED) {
TAILQ_REMOVE(&thread->active_pollers, poller, tailq);
                                      free(poller);
                                      continue;
                       }
                       poller->state = SPDK_POLLER_STATE_RUNNING;
// 调用poller注册的方法
poller_rc = poller->fn(poller->arg);
// poller转换状态
poller->state = SPDK_POLLER_STATE_WAITING;
}
// 调用定时poller中的方法
TAILQ_FOREACH_SAFE(poller, &thread->timer_pollers, tailq, tmp) {
               // 类似非定时poller过程,不过会检查是否到了预定的时间
               if (now < poller->next_run_tick)  break;
}
// 最后统计时间
}

Io_device 和 io_channel在thread中也是非常重要的概念。它们的实现都在thread.c中,io_device是设备的抽象,io_channel是对该设备通道的抽象。一个线程可以创建多个io_channel . io_channel只能和一个io_device绑定,并且这个io_channel是别的线程使用不了的。

图 3 io_device、io_channel和线程关系图


Io_device结构

struct io_device {
        void                                                    *io_device; // 抽象的device指针
        char                                                    name[SPDK_MAX_DEVICE_NAME_LEN + 1]; // 名字
        spdk_io_channel_create_cb         create_cb; // io_channel创建的回调函数
        spdk_io_channel_destroy_cb       destroy_cb; // io_channel销毁的回调函数
        spdk_io_device_unregister_cb     unregister_cb; // io_device解绑的回调函数
        struct spdk_thread                          *unregister_thread; // 不使用该device线程
        uint32_t                                             ctx_size;              // ctx的大小,将会传给io_channel处理
        uint32_t                                             for_each_count;  // io_channel的数量
        TAILQ_ENTRY(io_device)                              tailq;    // device队列头
        uint32_t                                             refcnt;                  // 计数器
        bool                                                    unregistered; // 是否该device被注册
};

可以看到,io_device实际上只提供了一些自身io_device的操作和io_channel相关的方法,具体的io_device实体其实是那个名字叫io_device的void指针。因为thread中的io_device只提供了thread这一层接口,具体的io操作每一个设备很难被抽象出来,所以这一层的接口只负责管理io_channel的创建、销毁和绑定等。

Io_channel的结构
struct spdk_io_channel {
        struct spdk_thread                          *thread; // 绑定的线程
        struct io_device                *dev;            // 绑定的io_device
        uint32_t                                             ref; // io_channel引用计数
        uint32_t                                             destroy_ref;  // destroy前被引用的次数
        TAILQ_ENTRY(spdk_io_channel)  tailq; // io_channel 队列头
        spdk_io_channel_destroy_cb       destroy_cb;         // io_channel销毁的回调函数
};

虽然io_channel看起来是很简单的结构体,实际上在创建一个io_device的时候,会要求使用者传入一个io_channel_ctx的大小作为调用的参数,而在给io_channel分配内存的时候,除了分配本身io_channel结构体的大小外,还会额外分配一个io_channel_ctx的大小,这个context可以理解成一个void指针,当用户在使用io_channel的时候,实际上还是通过context的部分去访问io_device。

NVMe-oF实例

nvmf_tgt 是spdk中一个重要的模块,这里详细的写一下它作为一个target实例是如何使用thread、io_device以及io_channel的。

在spdk应用刚启动的时候,reactor模块就会自动加载起来,然后在加载nvmf subsystem的时候,会调用spdk_nvmf_subsystem_init(lib/event/subsystems/nvmf/nvmf_tgt.c)方法,nvmf_tgt其实也是有生命周期,并且有一个状态机去管理它的生命周期。

enum nvmf_tgt_state {
        NVMF_TGT_INIT_NONE = 0, // 最初的状态
        NVMF_TGT_INIT_PARSE_CONFIG, // 解析配置文件
        NVMF_TGT_INIT_CREATE_POLL_GROUPS, // 创建poll groups
        NVMF_TGT_INIT_START_SUBSYSTEMS, // 启动subsystem
        NVMF_TGT_INIT_START_ACCEPTOR,      // 开始接收
        NVMF_TGT_RUNNING,                                // running
        NVMF_TGT_FINI_STOP_SUBSYSTEMS,
        NVMF_TGT_FINI_DESTROY_POLL_GROUPS,
        NVMF_TGT_FINI_STOP_ACCEPTOR,
        NVMF_TGT_FINI_FREE_RESOURCES,
        NVMF_TGT_STOPPED,
        NVMF_TGT_ERROR,
};

首先在NVMF_TGT_INIT_PARSE_CONFIG状态中,nvmf_tgt会去解析启动时传入的配置文件,当解析了[nvmf]这个label后,会调用spdk_nvmf_tgt_create这个方法,这个方法将初始化了全局的g_nvmf_tgt变量,同时也将tgt注册成了一个io_device。

1 spdk_io_device_register(tgt,
2                                                      spdk_nvmf_tgt_create_poll_group,
3                                                      spdk_nvmf_tgt_destroy_poll_group,
4                                                      sizeof(struct spdk_nvmf_poll_group),
5                                                      "nvmf_tgt");

spdk_nvmf_tgt_create_poll_group和spdk_nvmf_tgt_destroy_poll_group是io_channel创建和销毁的回调方法(在spdk_get_io_channel时调用 create_cb)。第三个参数是io_channel_ctx的size,既然这里传入了spdk_nvmf_poll_group的大小,那么很明显说明在nvmf中io_channel_ctx对象就是spdk_nvmf_poll_group。

当config文件解析完了之后,nvmf_tgt状态到了NVMF_TGT_INIT_CREATE_POLL_GROUPS,这个状态下会为每一个线程都创建相应的poll group。

spdk_for_each_thread(nvmf_tgt_create_poll_group,
                                                                         NULL,
                                                                         nvmf_tgt_create_poll_group_done);
static void nvmf_tgt_create_poll_group(void *ctx)
{
        struct nvmf_tgt_poll_group *pg;
               ….
        pg->thread = spdk_get_thread();
        pg->group = spdk_nvmf_poll_group_create(g_spdk_nvmf_tgt);
        ….
}

再看spdk_nvmf_poll_group_create中,

struct spdk_nvmf_poll_group * spdk_nvmf_poll_group_create(struct spdk_nvmf_tgt *tgt)
{
        struct spdk_io_channel *ch;
        ch = spdk_get_io_channel(tgt);
        ….
        return spdk_io_channel_get_ctx(ch);
}

在spdk_get_io_channel中,会先去检查传入的io_device是不是已经注册好了的,如果已经注册了,将会创建一个新的io_channel返回,创建的过程会回调在注册io_device时注册的io_channel创建方法(即方法spdk_nvmf_tgt_create_poll_group)。

static int spdk_nvmf_tgt_create_poll_group(void *io_device, void *ctx_buf)
{
        ….. // 初始化transport 、nvmf subsystem等
// 注册一个poller
        group->poller = spdk_poller_register(spdk_nvmf_poll_group_poll, group, 0);
        group->thread = spdk_get_thread();
        return 0;
}

在spdk_nvmf_poll_group_poll中,因为spdk_nvmf_poll_group对象中有transport的poll group,所以它会调用对应的transport的poll_group_poll方法,比如rdma的poll_group_poll就会轮询rdma注册的poller处理每个在相应的qpair来的请求,进入rdma的状态机将请求处理好。

然后这个状态就结束了,之后再初始化好了nvmf subsystem相关的东西之后,到了状态NVMF_TGT_INIT_START_ACCEPTOR。在这个状态中,只注册了一个poller。

1 g_acceptor_poller = spdk_poller_register(acceptor_poll, g_spdk_nvmf_tgt,
2                                                                                g_spdk_nvmf_tgt_conf->acceptor_poll_rate);

这个poller调用的transport的方法,不断的监听是不是有新的fd连接进来,如果有就调用new_qpair的回调。

总结

spdk thread 模型是spdk无锁化的基础,在一个线程中,当分配一个任务后,一直会运行到任务结束为止,这确保了不需要进行线程之间的切换而带来额外的损耗。同时,高效的spdk ring提供了不同线程之间的消息传递,这就使得任务结束的结果可以高效的传递给别的处理线程。而io_device和io_channel的设计保证了资源的抽象访问以及独立的路径不去争抢资源池,并且块设备由于是对块进行操作的所以也十分适合抽象成io_device。正是因为以上几点才让spdk线程模型能够达到无锁化且为多个target提供了基础线程框架的支持。

本文福利, 免费领取C++学习资料包、技术视频/代码,1000道大厂面试题,内容包括(C++基础,网络编程,数据库,中间件,后端开发,音视频开发,Qt开发)↓↓↓↓↓↓见下面↓↓文章底部点击免费领取↓↓

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/m0_60259116/article/details/133905530

智能推荐

计算机丢失concrt140,小编教你解决concrt140 dll 【解决教程】 的技巧_-程序员宅基地

文章浏览阅读4.5w次。近日有小伙伴发现电脑出现问题了,在突然遇到concrt140 dll时不知所措了,对于concrt140 dll带来的问题,其实很好解决concrt140 dll带来的问题,下面小编跟大家介绍concrt140 dll解决方法:丢失CONCRT140.dll,怎么办?答:分析及解决:网上下载这个DLL文件,将其放置到system32目录下面。 重启系统,或者在CMD下面运行regsvr32*.dl..._concrt140.dll下载教程

微信小程序源码案例大全_微信小程序switch页面demo-程序员宅基地

文章浏览阅读4.3k次,点赞4次,收藏62次。微信小程序demo:足球,赛事分析 小程序简易导航 小程序demo:办公审批 小程序Demo:电魔方 小程序demo:借阅伴侣 微信小程序demo:投票 微信小程序demo:健康生活 小程序demo:文章列表demo 微商城(含微信小程序)完整源码+配置指南 微信小程序Demo:一个简单的工作系统 微信小程序Demo:用于聚会的小程序 微信小程序Demo:Growth 是一款..._微信小程序switch页面demo

SLAM学习笔记(Code2)----刚体运动、Eigen库_eigen.determinant-程序员宅基地

文章浏览阅读2.2k次。2.1除了#include<iostream>之外的头文件#include <Eigen/Core>//Core:核心#include <Eigen/Dense>//求矩阵的逆、特征值、行列式等#include <Eigen/Geometry>//Eigen的几何模块,可以利用矩阵完成如旋转、平移/***其他***/#include <ctime>//可用于计时,比较哪个程序更快#include <cmath>//包含a_eigen.determinant

图像梯度-sobel算子-程序员宅基地

文章浏览阅读1w次,点赞12次,收藏61次。(1)理论部分x 水平方向的梯度, 其实也就是右边 - 左边,有的权重为1,有的为2 。若是计算出来的值很大 说明是一个边界 。y 竖直方向的梯度,其实也就是下面减上面,权重1,或2 。若是计算出来的值很大 说明是一个边界 。图像的梯度为:有时简化为:即:(2)程序部分函数:Sobelddepth 通常取 -1,但是会导致结果溢出,检测不出边缘,故使..._sobel算子

cuda10.1和cudnn7.6.5百度网盘下载链接(Linux版)_cudnn7.6网盘下载-程序员宅基地

文章浏览阅读3.6k次,点赞17次,收藏8次。cuda10.1和cudnn7.6.5百度网盘下载链接(Linux版)在官网下载不仅慢,,,主要是还总失败。。终于下载成功了,这里给出百度网盘下载链接,希望可以帮到别人百度网盘下载链接提取码: vyg5_cudnn7.6网盘下载

Python正则表达式大全-程序员宅基地

文章浏览阅读9.3w次,点赞69次,收藏427次。定义:正则表达式是对字符串(包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为“元字符”))操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。正则表达式是一种文本模式,该模式描述在搜索文本时要匹配的一个或多个字符串。上面都是官方的说明,我自己的理解是(仅供参考):通过事先规定好一些特殊字符的匹配规则,然后利用这些字符进行组合来匹配各种复杂的字符串场景。比如现在的爬虫和数据分析,字符串校验等等都需要用_python正则表达式

随便推点

NILM(非侵入式电力负荷监测)学习笔记 —— 准备工作(一)配置环境NILMTK Toolkit_nilmtk学习-程序员宅基地

文章浏览阅读1.9w次,点赞27次,收藏122次。安装Anaconda,Python,pycharm我另一篇文章里面有介绍https://blog.csdn.net/wwb1990/article/details/103883775安装NILMTK有了上面的环境,接下来进入正题。NILMTK官网:http://nilmtk.github.io/因为官方安装流程是基于linux的(官方安装流程),我这里提供windows..._nilmtk学习

k8s-pod 控制器-程序员宅基地

文章浏览阅读826次,点赞20次,收藏28次。如果实际 Pod 数量比指定的多那就结束掉多余的,如果实际数量比指定的少就新启动一些Pod,当 Pod 失败、被删除或者挂掉后,RC 都会去自动创建新的 Pod 来保证副本数量,所以即使只有一个 Pod,我们也应该使用 RC 来管理我们的 Pod。label 与 selector 配合,可以实现对象的“关联”,“Pod 控制器” 与 Pod 是相关联的 —— “Pod 控制器”依赖于 Pod,可以给 Pod 设置 label,然后给“控制器”设置对应的 selector,这就实现了对象的关联。

相关工具设置-程序员宅基地

文章浏览阅读57次。1. ultraEdit设置禁止自动更新: 菜单栏:高级->配置->应用程序布局->其他 取消勾选“自动检查更新”2.xshell 传输文件中设置编码,防止乱码: 文件 -- 属性 -- 选项 -- 连接 -- 使用UTF-8编码3.乱码修改:修改tomcat下配置中,修改: <Connector connectionTimeou..._高级-配置-应用程序布局

ico引入方法_arco的ico怎么导入-程序员宅基地

文章浏览阅读1.2k次。打开下面的网站后,挑选要使用的,https://icomoon.io/app/#/select/image下载后 解压 ,先把fonts里面的文件复制到项目fonts文件夹中去,然后打开其中的style.css文件找到类似下面的代码@font-face {font-family: ‘icomoon’;src: url(’…/fonts/icomoon.eot?r069d6’);s..._arco的ico怎么导入

Microsoft Visual Studio 2010(VS2010)正式版 CDKEY_visual_studio_2010_professional key-程序员宅基地

文章浏览阅读1.9k次。Microsoft Visual Studio 2010(VS2010)正式版 CDKEY / SN:YCFHQ-9DWCY-DKV88-T2TMH-G7BHP企业版、旗舰版都适用推荐直接下载电驴资源的vs旗舰版然后安装,好用方便且省时!) MSDN VS2010 Ultimate 简体中文正式旗舰版破解版下载(附序列号) visual studio 2010正_visual_studio_2010_professional key

互联网医疗的定义及架构-程序员宅基地

文章浏览阅读3.2k次,点赞2次,收藏17次。导读:互联网医疗是指综合利用大数据、云计算等信息技术使得传统医疗产业与互联网、物联网、人工智能等技术应用紧密集合,形成诊前咨询、诊中诊疗、诊后康复保健、慢性病管理、健康预防等大健康生态深度..._线上医疗的定义